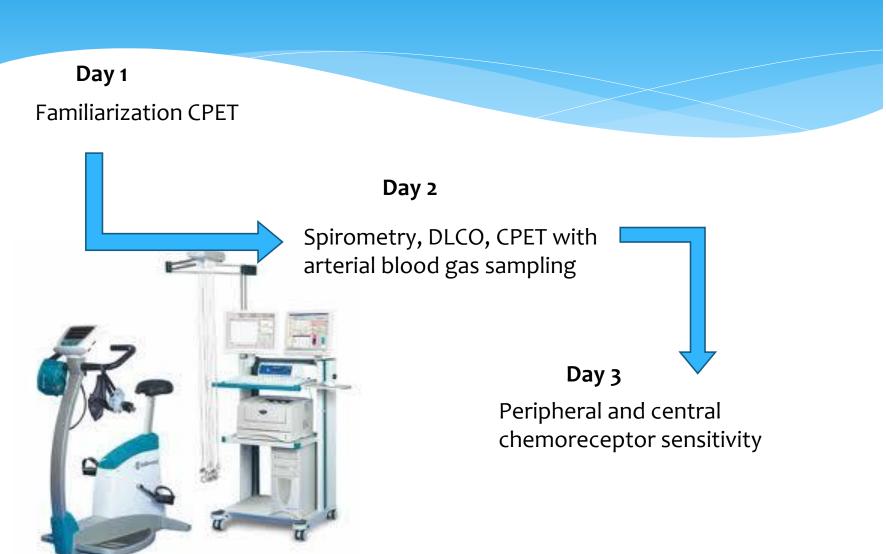

Physiological Insights of Exercise Hyperventilation in Pulmonary Hypertension

<u>Stefania Farina</u> MD, Noemi Bruno MD, Cecilia Agalbato MD, Mauro Contini MD, Roberto Cassandro MD, Davide Elia MD, Sergio Harari MD, Piergiuseppe Agostoni MD, PhD

Centro Cardiologico Monzino, Milano Ospedale San Giuseppe, Milano Pulmonary hypertension patients show a pronounced hyperventilation, meaning an excessive increase in pulmonary ventilation compared to carbon dioxide output that leads to high VE/VCO2 slope and low values of PetCO2.

VE/VCO2 slope and PetCO2 are important parameters for severity grading and prognosis: the higher the slope and the lower the PetCO2, the worse are both disease severity and prognosis.


Stefania Farina, Centro Cardiologico Monzino

There are several possible causes of hyperventilation in PAH patients including:

- Hypoxemia
- elevated dead space ventilation
- Ventilation/perfusion mismatch
- enhanced peripheral or central chemoreceptor activity.

The aim of our study was to evaluate the possible role of these causes in exercise hyperventilation in PAH patients.

Study protocol

Stefania Farina, Centro Cardiologico Monzino

18 PAH patients in stable hemodynamic status

Demographics		
N	18	
Sex Male (%)	7 (39)	
Age (years)	56±15	
BMI (kg/m ²)	24.9±3.39	
LVEF (%)	61.5±4.4	
Systolic Blood Pressure (mmHg)	117±14	
Diastolic Blood Pressure (mmHg)	70±8	
Heart Rate (beats/min)	70±10	
NYHA Class II (%)	17 (94%)	
NYHA Class III (%)	1 (5 %)	
Atrial fibrillation (%)	2 (11%)	
PH group 1 (%)	16 (89%)	
PH group 4 (%)	2 (11%)	
Connective tissue disease (%)	4 (22%)	
Hemodynamic parameters		
PAPm (mmHg)	39±11	
PAWP (mmHg)	10±3	
CO (l/min)	4.76 ± 0.97	
PVR (WU)	5.99±3.60	
Therapy		
Ambrisentan5 mg/die (%)	4 (22.2)	
Bosentan 250 mg/die (%)	4 (22.2)	
Macitentan 10 mg/die (%)	8 (44.4)	
Tadalafil 40 mg/die (%)	4 (22.2)	
Sildenafil 60 mg/die (%)	9 (50)	
Inhaled Iloprost 30 mcg/die (%)	1 (5.5)	
Riociguat 7.5 mg/die (%)	1 (5.5)	

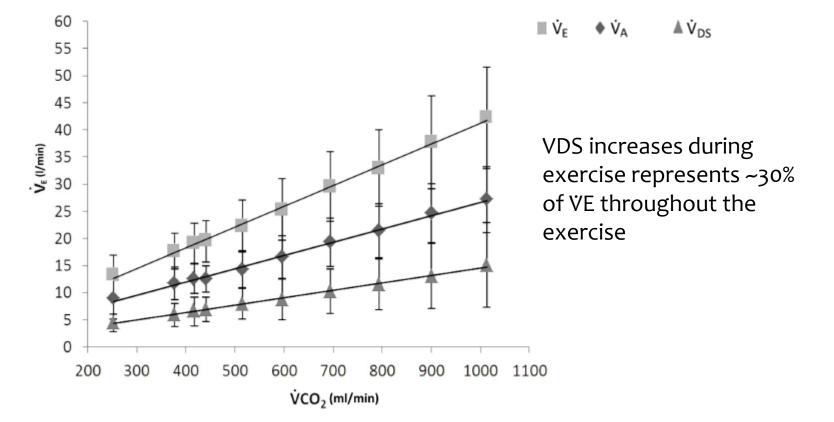
Spirometry and CPET parameters

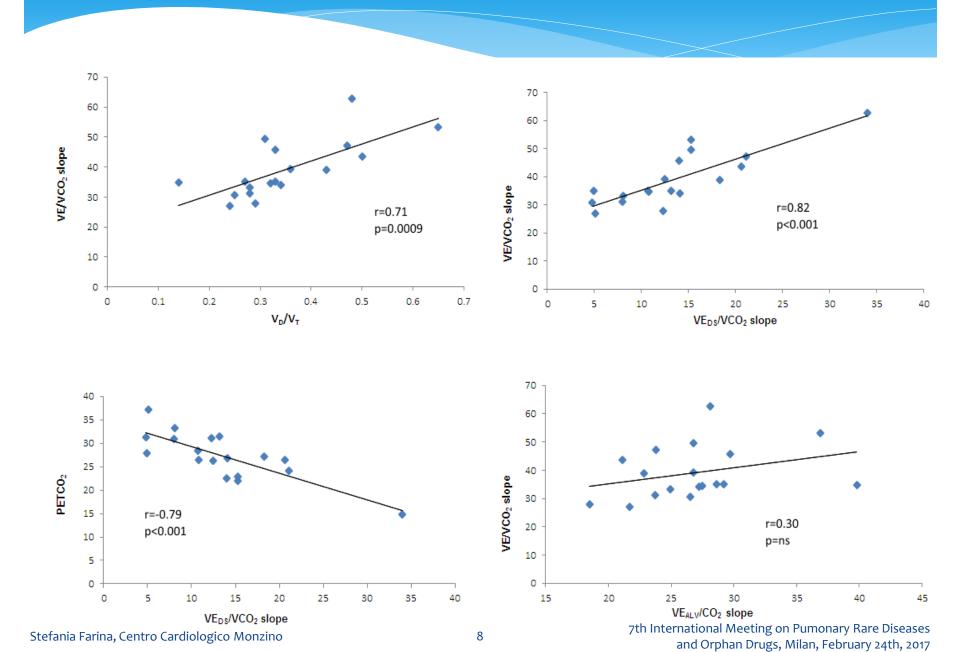
FVC (L)	2.92±0.92
FVC %	87±22
FEV1 (L)	2.27±0.67
FEV1 (% predicted value)	82±20
FVC/FEV1 (% predicted value)	77.2±8.52
DLCO (% predicted value)	60 ±16
VE/VCO ₂ slope	39.1±9.0
VE _{DS} /VCO ₂ slope	13.5±7.1
VE _{ALV} /VCO ₂ slope	26.9±5.2
peak VO2 (l/min)	1.06±0.24
peak VO ₂ /Kg (ml/Kg/min)	13.3±3.58
VO ₂ (l/min) at AT	0.66±0.16
rest PetCO ₂	28.3±3.9
AT PetCO ₂	29.4±4.3
peak PetCO ₂	27.3±5.0
peak RQ	1.08±0.08
Watt	65±24
Peak HR (bpm)	136 ± 27

Group 1 PAH patients were mainly idiopathic in NYHA II.

VDS calculation

VDS was calculated rearranging the VE equation:

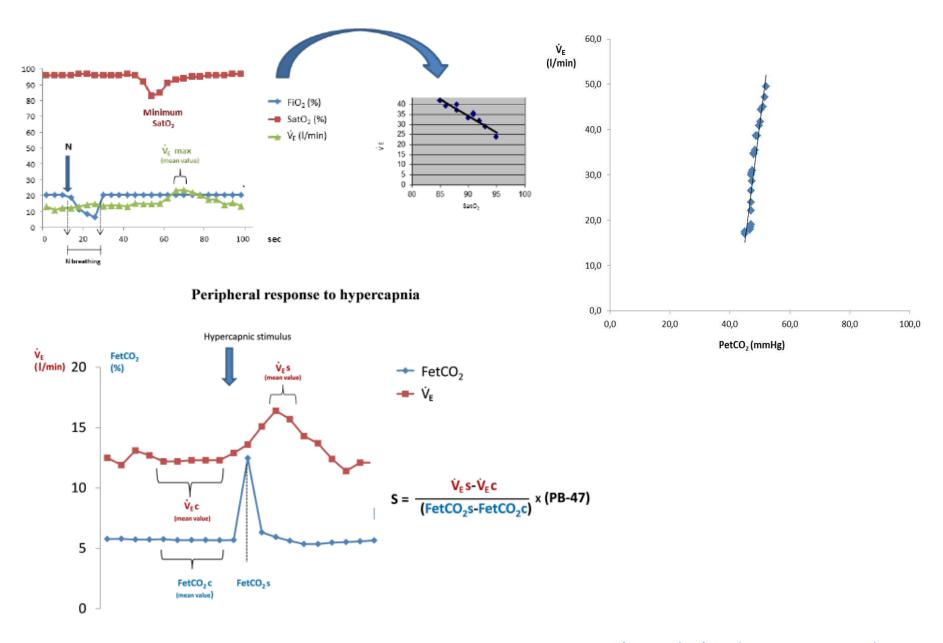

VD/VT = (PaCO2-PECO2/PaCO2 and PECO2 = 863 * VCO2)/VE


VT = tidal volume, PaCO₂ is the arterial partial pressure of CO₂, PECO₂ is the average expiratory partial pressure of CO₂ and 86₃ is a constant.

VA was then calculated as VE – VDS

VDS during exercise

Average total ventilation (VE), alveolar ventilation (VA) and dead space ventilation (VDS) vs. carbon dioxide output (VCO₂) calculated every minute



High VE/Q mistmatch

						1					
	rest	1'	2'	3'	4'	5'	6'	7'	8'	9'	Peak
PaCO ₂ (mmHg)	30±5	31±5	33±5	33±4	34±3	34±4	34±5	34±5	35±4	34±5	33±5
PaO ₂ (mmHg)	84±16	87±18	87±17	88±17	87±20	87±19	84±19	82±21	84±21	83±22	81±24
PetCO ₂ (mmHg)	28±4	28±4	28±4	29±5	29±4	29±4	29±5	29±5	28±5	29±5	27±5
PetO ₂ (mmHg)	112±6	112±5	112±5	112±5	112±5	113±5	114±5	110±25	117±6	118± 5	120±5
P(a-et)CO ₂ (mmHg)	2.1±3.7	2.7±3.8	2.5±7.5	4.8±2.9	3.1±9.1	5.6±3.9	5.3±4.0	5.8±4.3	6.3±4.3	8.7±8.9	6.0±4.2
V _D /V _T	0.36±0.1	0.34±0.1	0.34±0.1	0.35±0.1	0.35±0.1	0.34±0.1	0.35±0.1	0.35±0.1	0.34±0.1	0.33±0.1	0.35±0.1
V _E /VCO2 ratio	55±13	48±9	47±10	45±9	43±7	43±8	43±8	42±7	42±8	39±6	43±8
PAO2 (mmHg)	111±7	110±6	110±11	107±5	109±11	106±6	105±5	105±5	106±5	107±6	109±6
P(A-a)O ₂ (mmHg)	27±17	23±17	23±18	19±17	22±22	20±19	21±20	23±21	21±21	23±22	26±25

Peripheral response to hypoxia

Stefania Farina, Centro Cardiologico Monzino

		PAH	control
(Chemoreceptor response Hypoxia	0.416±0.402	0.285±0.221
•	Chemoreceptor response HyperCO2	0.076±0.047	0.066±0.043
	Central hyperCO2 sensitivity	4.475±3.990	2.352±0.936

- Peripheral chemoreceptor responses were unrelated with exercise.
- positive correlation was found between central CO2 response and VA/VCO2 slope (r=0.65, p=0.013).

Conclusions

- \rightarrow V_E/VCO₂ slope correlates with peak exercise V_D/V_T
- \rightarrow V_{DS} increases during exercise, representing ~30% of V_E throughout the exercise
- ➔ Both V_E/VCO₂ slope and PetCO₂ at peak exercise significantly correlate with V_{DS}/VCO₂ slope
- → Peripheral chemoreceptor activity unrelated to exercise hyperventilation
- → Central CO₂ chemoreceptor activity correlates with V_A/VCO₂ slope, so that, the higher the central CO₂ chemoreceptor activity, the higher the V_A/VCO₂ slope during exercise.

Increased DS and VE/Q mismatch are among the main mechanisms involved in exercise hyperventilation in PH