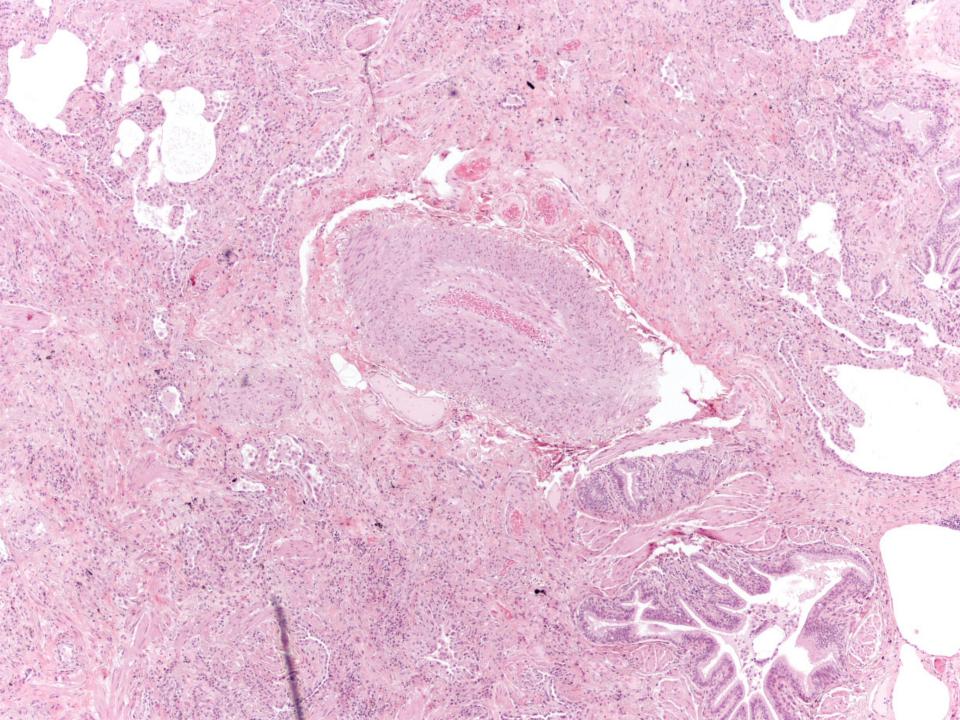


Ipertensione polmonare e polmone (gruppo III)

50° Convegno di Cardiologia DG

Milano 26 – 29 Settembre 2016


Sergio Harari
U.O. di Pneumologia e UTIR
Servizio di Emodinamica e
Fisiopatologia Respiratoria
Ospedale San Giuseppe - Milano

 Currently there is no specific therapy for PH associated with lung diseases.

- Published experience with targeted PAH drug therapy is scarce, and so far there is no evidence from RCTs suggesting that PAH drugs result in improved symptoms or outcomes in patients with lung disease.
- The use of drugs approved for PAH is not recommended for patients with PH due to lung disease.

Disorders of the respiratory system and hypoxemia

- ◆ PH is generally mild or moderate (PAP < 30 mmHg), is not per se a predominant prognosis factor and not require specific therapeutic intervention (except oxygen therapy)</p>
- Medial hypertrophy and mild intimal fibrosis

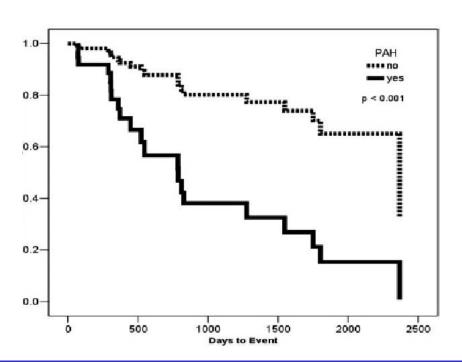
The prevalence of PH in patients with ILD varies greatly as a function of the underlying disease and the diagnostic mode used to identify PH

 The most extensive data have been published in IPF

Author	Year	Patients	N	Diagnosis	Definition of PH	Prevalence, %
Leutche et al.	2004	IPF	28	RHC	mPAP>35 mmHg	21.4
Nadrous et al.	2005	IPF	88	Echo	sPAP>35 mmHg sPAP>50 mmHg	84 31
Hamada et al.	2007	IPF	70	RHC	mPAP>25 mmHg	8.1
Zisman et al.	2007	IPF	65	RHC	mPAP>25 mmHg	41.5
Patel et al.	2007	IPF	41	RHC	mPAP>25 mmHg +PCWP ≤15 mmHg	20
Shorr et al.	2007	IPF	2.5	RHC	mPAP>25 mmHg	46.1
Nathan et al.	2008	IPF	118	RHC	mPAP>25 mmHg	40.7
Song et al.	2009	IPF	131	Echo	sPAP>40 mmHg	25
Minai et al.	2009	IPF	148	RHC	mPAP>25mmHg mPAP>40mmHg	45.9 14.2
Kimura et al.	2012	IPF	101	RHC	mPAP > 20 mmHg	34,6

The incidence and prevalence of PH in IPF remain unclear, with widely varying estimates.

The differences reflect:


- varying patient populations
- varying underlying disease severity
- differing diagnostic modalities

Pulmonary hypertension in IPF

88 patients	PASP	PASP	PASP
with IPF	0-34 mmHg	35-49 mmHg	>50 mmHg
	(n=14)	(n=47)	(n=27)
Median survival	4.8y	4.1y	0.7y
1 year survival	100%	79%	44%
3 year survival	64%	61%	32%

Nadrous et al Chest 2005: 128;616-7

Pulmonary hypertension in IPF

Variables	MAP ≤ 25 mmHg (n= 10)	MAP > 25 mmHg (n= 24)	P value
MPAP, mmHg	18.2 ± 3.6	29.8 ± 5.1	NA
6MWT distance, m	365.9 ± 81.8	143.5 ± 65.5	< 0.001
SpO2 nadir on 6MWT, %	88.0 ± 3.5	80.1 ± 3.7	< 0.001
Mortality rate, %	37.5	70.0	0.003

Lettieri CJ et al. Chest 2006, 129:746-52

Table 1 Demographic and clinical data of the study population (n = 66)

Parameters	No
Clinical parameters*	
Age (years)	57 (12)
Gender (F:M)	28:38
Smoking (pack years)	27 non-smokers, 31 ex- smokers, 7 current smokers, 1 unknown
Time from presentation (months)	33 (4-264)
WHO class	3 (1-4)
Working diagnosis (based on	IPF (n = 16)
multidisciplinary consensus	Idiopathic NSIP (n = 6)
including lung biopsy when available)	CTD-related fibrosis (n = 17
available)	Sarcoidosis (n = 12)
	Other interstitial diseases
	(n = 15)
Biopsy diagnosis	n = 13 (20%)
Right heart catheter*	
mPAP (mm Hg)	33.6 (11.8)
mRAP (mm Hg)	5.9 (4.2)
mLAP (mm Hg)†	10.7 (5.1)
PVR (Wood units)	5.9 (4.3)
PVR index (Wood units/m²)	10.4 (7.1)
Cardiac output (Vmin)	4.3 (1.2)
Cardiac index (Vmin/m²)	2.3 (0.5)
Echocard iograp hy	
RVSP (mm Hg, n = 48)	56 (24–102)
PAT (ms, n = 46)	100 (33–144)
Pulmonary function	
TLCO % (n = 65)	29.6 (14.7)
Kco % (n = 65)	52.0 (19.7)
TLC % (n = 61)	72.5 (20.2)
FEV ₁ % (n = 62)	62.4 (23.3)
FVC % (n = 62)	67.9 (23.1)
Pao ₂ (kPa, n = 61)	8.4 (2.2)
Paco ₂ (kPa, n = 61)	5.0 (0.9)
CPI (n = 62)	56.9 (14.6)
6MWT (n = 42)	01 4 (0 4)
End Spo ₂ (%)	81.4 (8.4)
6MWT distance (m)	254.6 (128.1)

Pulmonary vascular resistance predicts early mortality in patients with diffuse fibrotic disease and suspected pulmonary hypertension

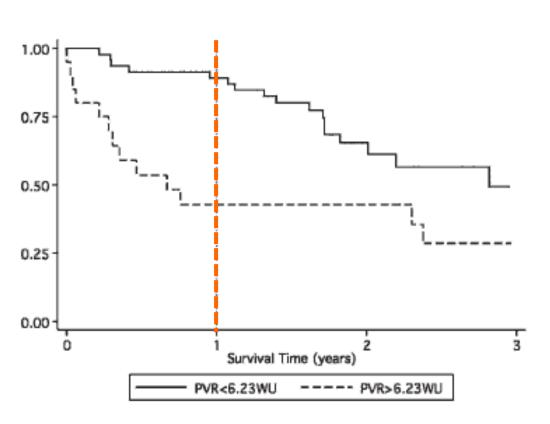

Corte TJ et al. Thorax 2009; 64: 883

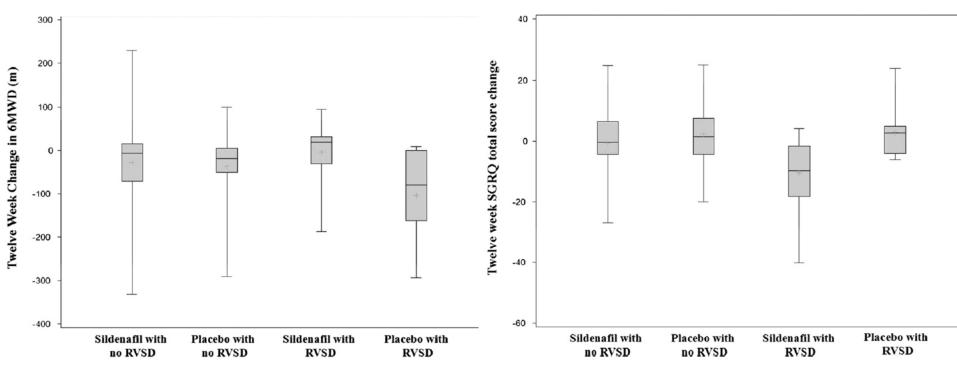
Table 2 Comparison of patients dying within 12 months with those surviving at 12 months

	Death within 12 months	Survival at 12 months	p Value*
mPAP (mm Hg)	39.0 (14.1)	31.7 (10.4)	0.03
PVR (WU)	9.4 (5.8)	4.6 (2.8)	< 0.001
PVR index (WU/m²)	16.4 (9.7)	8.5 (4.8)	< 0.001
mLAP (mm Hg)	12.2 (6.4)	9.5 (5.0)	0.11
Cardiac output (Vmin)	3.8 (1.3)	4.4 (1.1)	0.06
PAT (ms)	69.4 (21.2)	99.5 (28.1)	0.005
Pao ₂ (kPa)	7.4 (1.4)	8.8 (2.3)	0.03

Pulmonary vascular resistance predicts early mortality in patients with diffuse fibrotic disease and suspected pulmonary hypertension

Corte TJ et al. Thorax 2009; 64: 883

In severe diffuse lung disease, raised PVR strongly predicts death within 1 year independent of disease severity or diagnosis of IPF.


PVR is superior to other measurements at RHC and also to non-invasive tests (alone or in combination). These findings suggest that, in advanced lung disease, prognostic information that is only obtainable by RHC has important management implications

◆The presence of PH in IPF is associated with higher mortality and its development contributes to the deterioration of IPF patients

Sildenafil in IPF with Right-sided Ventricular Dysfunction A substudy of STEP-IPF

- ➤ Of 180 subjects enrolled into STEP-IPF, echocardiograms from 119 were available for independent review (sildenafil, n 56; placebo, n 63)
- ➤ Right ventricular hypertrophy (RVH), right ventricular systolic dysfunction (RVSD), and right ventricular systolic pressure (RVSP) were assessed.
- Multivariable linear regression models estimated the relationship between RV abnormality, sildenafil treatment, and changes in 6MWD
- ➤ St. George's Respiratory Questionnaire (SGRQ), the EuroQol instrument, and SF-36 Health Survey (SF-36) from enrollment to 12 weeks.

Sildenafil in IPF with right-sided ventricular dysfunction A sub-study of STEP-IPF

Change in 6MWD at 12 weeks by treatment and presence of RVSD

Change in SGRQ total score at 12 weeks by treatment and presence or RVSD

Patients with any evidence of RVSD treated with sildenafil demonstrated a 99.3 m greater 6MWD as compared with those treated with placebo.

Treatment with sildenafil in subjects with RVSD resulted in a significantly lower SGRQ total score

Riociguat for interstitial lung disease and pulmonary hypertension: a pilot trial

Hoeper MM. et al. Eur Respir J 2013;41: 853 - 860

TABLE 1 Baseline demographics and clinical characteristics of the patients 22 Patients n Age years 60.5 (33.0-80.0) White ethnicity 22 (100.0) 14 (63.6) Male sex BMI kg·m⁻² 26 + 4WHO functional class Ш 19 (86.4) IV 3 (13.6) 6-min walk distance m 316 ± 96 Underlying disease Idiopathic pulmonary fibrosis 13 (59.1) Non-specific interstitial lung disease 5 (22.7) Sarcoidosis 3 (13.6) Systemic sclerosis 1 (4.5) Pulmonary function TLC % pred 67 ± 12 FVC % pred 67 ± 20 FEV1 % pred 67 ± 17 DLCO# mmol·min⁻¹·kPa⁻¹ 2.7 ± 1.5 Haemodynamics and blood gases Mean pulmonary artery pressure mmHg 40 ± 10 Pulmonary vascular resistance dyn-s⁻¹-cm⁻⁵ 656 ± 201 Cardiac output L-min-1 4.3 ± 1.4 Systolic blood pressure# mmHg 136 ± 16 Heart rate beats per minute

SPO₂ %

Sv0. 1 %

Paco₂ mmHg

 78 ± 14

 94 ± 3

62 + 12

 39 ± 7

Riociguat for interstitial lung disease and pulmonary hypertension: a pilot trial

Hoeper MM. et al. Eur Respir J 2013;41: 853 - 860

Objective: to assess the safety, tolerability and preliminary efficacy of riociguat, in patients with PH-ILD

Design: open-label, uncontrolled pilot trial

Intervention: patients received oral riociguat (1.0–2.5 mg three times daily) for 12 weeks (n=22), followed by an ongoing long-term extension (interim analysis at 12 months) in those eligible (n=15)

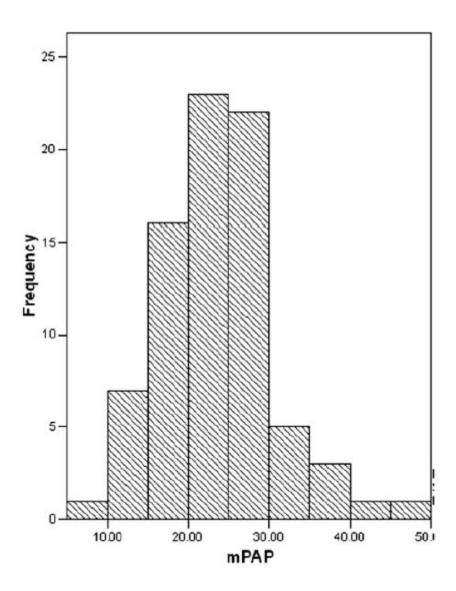
Conclusions: Riociguat was well tolerated by most patients and improved cardiac output and PVR, but not mPAP. Further studies are necessary to evaluate the safety and efficacy of riociguat in patients with PH-ILD.

Efficacy and safety of riociguat in patients with symptomatic pulmonary hypertension (PH) associated with idiopathic interstitial pneumonias (IIP) (RISE-IIP)

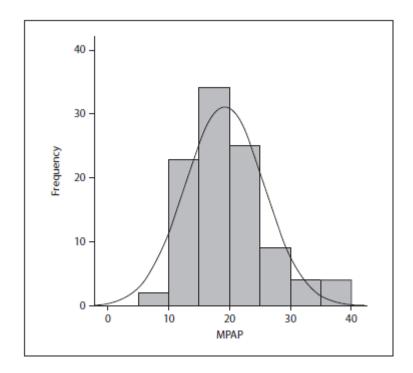
Phase 2 clinical study is terminated on 2016

The DMC recommended the study's immediate termination after observing that patients receiving riociguat were at a possibly increased risk of death and other serious adverse events as compared to patients receiving placebo

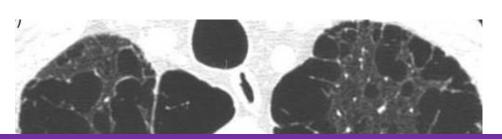
PH in chronic respiratory diseases management


Long-term oxygen therapy

- Stabilisation or mild improvement of hemodynamics ¹⁻⁴
- Lung transplantation
- Drug therapy
 - No proven benefit of PAH-specific drugs (not recommended)
 - IPF regardless of PH: no benefit (bosentan, macitentan), deleterious (ambrisentan, riociguat), unclear benefit (sildenafil)
 - Possible improvement of hemodynamics with unclear clinical benefit and risk of deterioration of gas exchange ⁵⁻¹⁰
 - 1. MRC study, Lancet 1981; 1:681
 - 2. NOTT study, Ann Intern Med 1980; 93: 391
 - 3. Weitzenblum E et al, Am Rev Respir Dis 1985; 131: 493
 - 4. Zielinski J et al, Chest 1998; 113: 65
 - 5. Saadjian AY et al, Eur Respir J 1988; 1: 716
 - 6. Agostoni P et al, Am Rev Respir Dis 1989; 139: 120
 - 7. Melot C et al, Am Rev Respir Dis 1984; 130: 612
 - 8. Bratel T et al, Eur Respir J 1990; 3: 46
 - 9. Guenard H et al, In: Derenne JP et al, 1996; pp. 227-266
 - 10. Ghofrani HA et al. Lancet 2002.


Haemodynamic classification of pulmonary hypertension due to lung diseases

Terminology	Haemodynamics (right heart catheterization)
COPD/IPF/CPFE without PH	PAPm <25 mmHg
COPD/IPF/CPFE with PH	PAPm ≥25 mmHg
COPD/IPF/CPFE with severe PH	PAPm >35 mmHg, or PAPm ≥25 mmHg in the presence of a low cardiac output (CI <2.5 L/min, not explained by other causes)


CI = cardiac index; COPD = chronic obstructive pulmonary disease; CPFE = combined pulmonary fibrosis and emphysema; IPF = idiopathic pulmonary fibrosis; PAP = pulmonary artery pressure; PAPm = mean pulmonary arterial pressure; PH = pulmonary hypertension.

Lettieri CJ et al. Chest 2006; 129:746-52

Kimura M et al. Respiration 2012

Combined pulmonary fibrosis and emphysema (CPFE)

Definition: Presence on HRCT of the chest of both:

- emphysema of the upper lobes (areas of abnormally low attenuation with a very thin wall [< 1 cm] or no wall),
- opacities suggestive of fibrosis of the lung bases (reticular opacities, basal and subpleural predominance, traction bronchiectasis, possibly honeycombing, with no or little ground glass opacities or consolidation).

PH in CPFE

PH is frequent in patients with the CPFE syndrome, with 47% of patients with estimated systolic right ventricular pressure ≥45 mmHg at echocardiography.

The risk of developing pulmonary hypertension is much higher in CPFE than in IPF without emphysema

The prognosis of CPFE is worse than that of IPF without emphysema, an outcome determined by severe pulmonary hypertension and not only by the presence of associated emphysema

PH in patients with CPFE

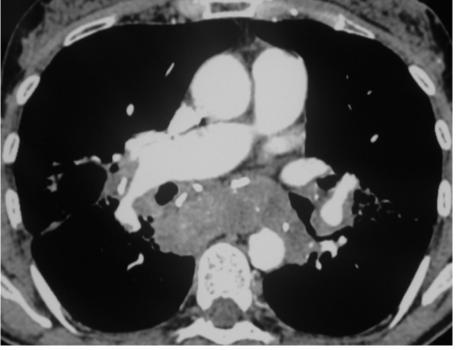
A retrospective multicentre study was conducted in 40 patients (38 males; age 68 ± 9 yrs; 39 smokers)

Dyspnoea was functional class II in 15%, III in 55% and IV in 30%. 6-min walk distance was 244±126 m. FVC was 86 ± 18%, FEV1 78 ± 19%, and DLCO 28 ± 16% of predicted.

PaO2 on room air was 56 ± 12 mmHg).

Mean pulmonary artery pressure was 40 ± 9 mmHg, cardiac index 2.5 ± 0.7 and pulmonary vascular resistance 521 ± 205 .

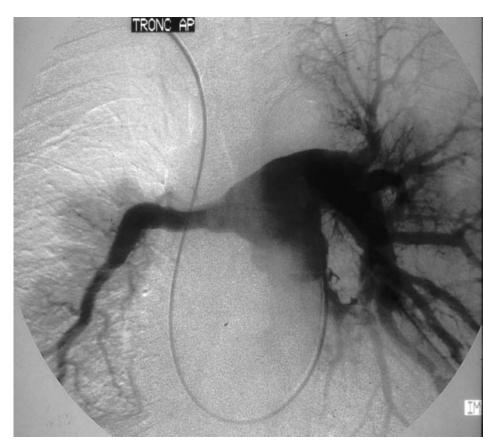
PH in patients with CPFE


Although the efficacy of drugs specifically indicated in PAH has not been demonstrated in patients with pulmonary parenchymal disorders and associated out-of-proportion pulmonary hypertension, a large number of patients from were treated off-label on an individual basis, thereby providing some preliminary information on the efficacy and safety of pulmonary hypertension therapy in this condition.

No significant effect of treatment was found on survival.

Pulmonary vascular involvement in sarcoidosis

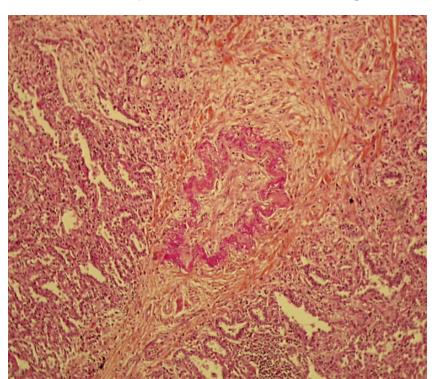
→ Extrinsic compression of large pulmonary arteries by mediastinal or hilar adenopathies or fibrosis was detected in 4 out of 15 patients in stage IV



Nunes et al. Thorax 2006

Fibrosing mediastinitis in a cause of pulmonary hypertension in sarcoidosis

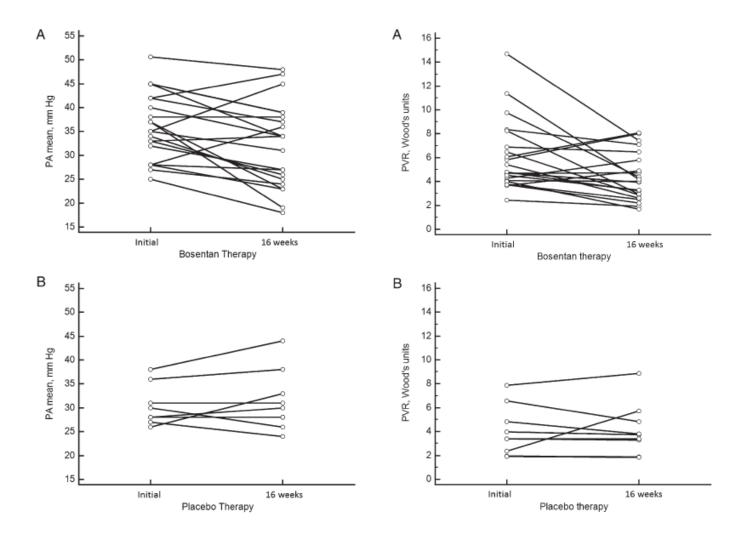
Pulmonary vascular involvement in sarcoidosis


Precapillary pulmonary hypertension in the context of sarcoidosis may be due at least in part to:

- → Extrinsic compression of large pulmonary arteries by mediastinal or hilar adenopathies or fibrosis
- → Destruction of the distal capillary bed by fibrotic process and resulting hypoxia (stage IV)
- → Specific vasculitis, with infiltration of the walls of pulmonary arteries and/or veins by granulomas (steroid sensitive ?)

Pulmonary vascular involvement in sarcoidosis

- Pulmonary hypertension in sarcoidois occurs in two very different settings
- → In the absence of pulmonary fibrosis, PH appears to be related to a specific vasculopathy and may be steroid-sensitive
- → In case of pulmonary fibrosis, the mechanism of PH is complex, but certainly involves at least in part a specific vasculopathy as PH is out of proportion with alterations in lung fuction. In these patients, physicians have to consider lung transplantation sooner than they would have solely on the basis of lung function



Original research

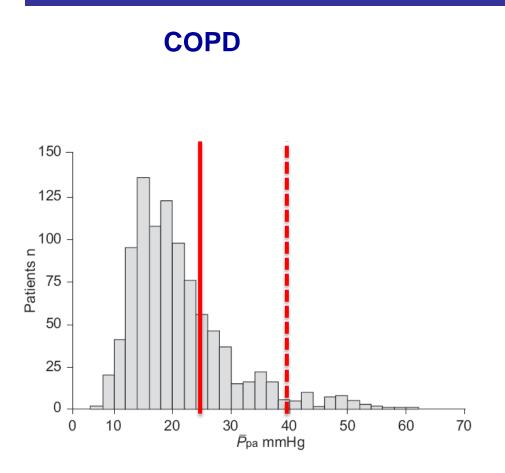
Bosentan for Sarcoidosis-Associated Pulmonary Hypertension A Double-Blind Placebo Controlled Randomized Trial

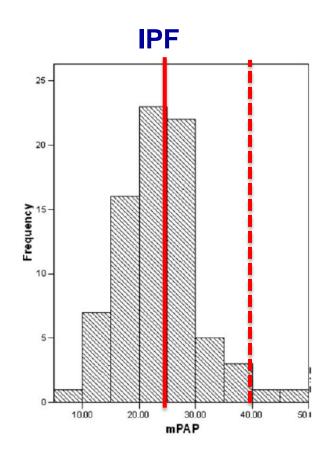
Baughman RP, et al. Chest 2014; 145; S10

Original research

Bosentan for Sarcoidosis-Associated Pulmonary Hypertension A Double-Blind Placebo Controlled Randomized Trial

Baughman RP, et al. Chest 2014; 145; S10


In conclusion, we found that 16 weeks of bosentan therapy in patients with SAPH is associated with a significant improvement in PA mean pressure and PVR. The level of improvement was similar to that reported in other WHO groups treated with bosentan. The treatment was well tolerated. The effect of treatment over longer periods will require further investigation.


PH in COPD: methods and prevalence

Author	N	Design	FEV1	PaO ₂ mmHg	DLCO %pred	PAP mmHg	CI L/min/m²	PVR dyn·s·cm ⁻⁵	Definition of PH	Prevalence of PH. %
Burrows	50	Prosp.	37 %	NR	81	26	2.5	468	>25 mmHg	20
Weitzenblum	175	Prosp.	40 %	63	-	20	3.2	NR	>20 mmHg	-
Weitzenblum	93	Prosp.	41 %	66	-	19	3.6	NR	>20 mmHg	34
Oswald- Mammosser	84	Prosp. Pat. LTOT	36 %	52	-	27	-	NR	>20 mmHg	77
Scharf	120	Retrosp. Pat. NETT	27 %	66	27	26	2.9	193	>20 mmHg	91
Thabut	215	Retrosp. Candid. LVRS/LT	24 %	62	-		3.0	376 ^a	>25 mmHg	50
Andersen	409	Retrosp. Candid. LT	23 %	63	25 ^b	24	-	-	>25 mmHg	36
Cuttica	4930	Retrosp. Candid. LT	22 %	-	-	25	-	NR	>25 mmHg	30

^a PVR index; ^b patients with PH

PH in chronic respiratory diseases: hemodynamics

« Disproportionate PH » : cluster analysis

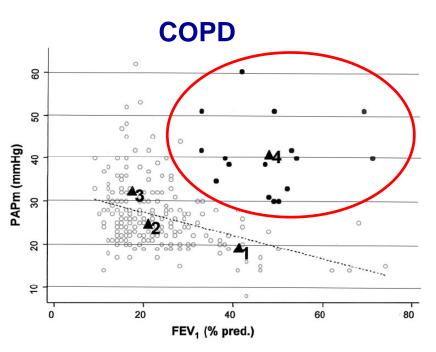
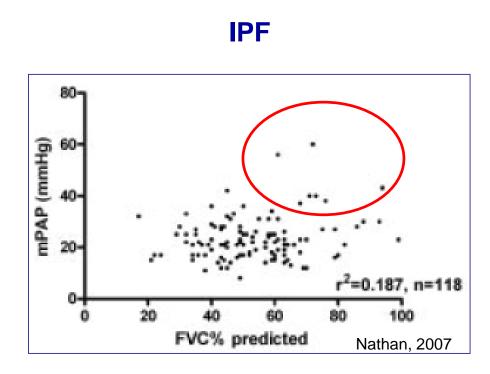
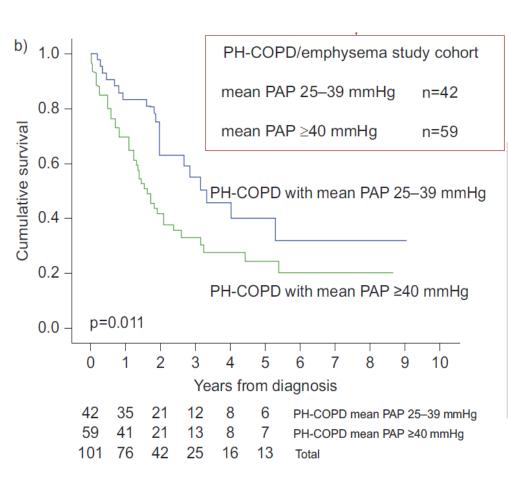
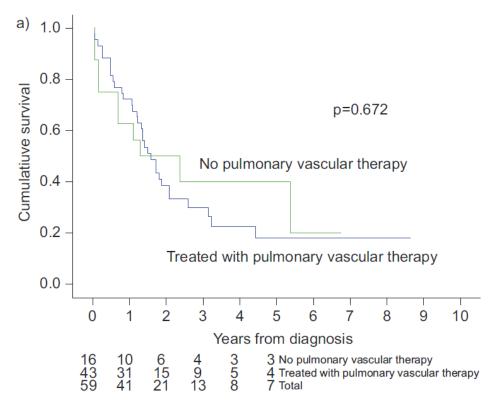
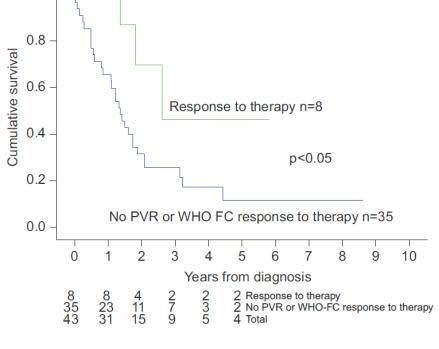




FIGURE 2. Characteristics of the four groups of patients disclosed by cluster analysis. Relationships between PAPm and FEV_1 are shown in groups 1, 2, and 3 (hollow circles) and group 4 (full circle). Triangles indicate the average of each group. A regression line is displayed.


Pulmonary hypertension in COPD: results from the ASPIRE registry


Judith Hurdman*, Robin Condliffe*,**, Charlie A. Elliot*,**, Andrew Swift*,*, Smitha Rajaram*, Christine Davies*, Catherine Hill*, Neil Hamilton*, lain J. Armstrong*, Catherine Billings*, Lauren Pollard*, Jim M. Wild*,*, Allan Lawrie*, Rod Lawson**, Ian Sabroe*,**,** and David G. Kiely*,**

me		COPD mean PAP ≥ 40 mmHg	P
Mean RAP mmHg	8 <u>±</u> 4	12 <u>±</u> 5	0.001
Mean PAP mmHg	32 ± 5	49 ± 8	< 0.001
CI L·min·m ⁻²	3.2 ± 0.8	2.5 ± 0.7	< 0.001
PCWP mmHg	13±5	12 <u>±</u> 5	0.156
PVR dyn·s·cm ⁻⁵	303 ± 168	755 ± 377	< 0.001
SvO ₂ %	67 ± 8	63 ± 8	0.051
Pulmonary function tests			
FEV1 % pred	51 ± 28	65 ± 23	0.006
FVC % pred	78 ± 25	90 ± 24	0.022
FEV1/FVC	0.51 ± 0.18	0.59 ± 0.18	0.041
DLCO % pred	40 ± 20	27±13	0.001

Eur Respir J 2013; 41: 1292–1301

b) 1.0

43 received compassionate PH therapy

PDE5i: n=31ERA: n=10

Trepostinil sc: n=1

- Inhaled iloprost: n=1

Treated patients had more severe hemodynamics

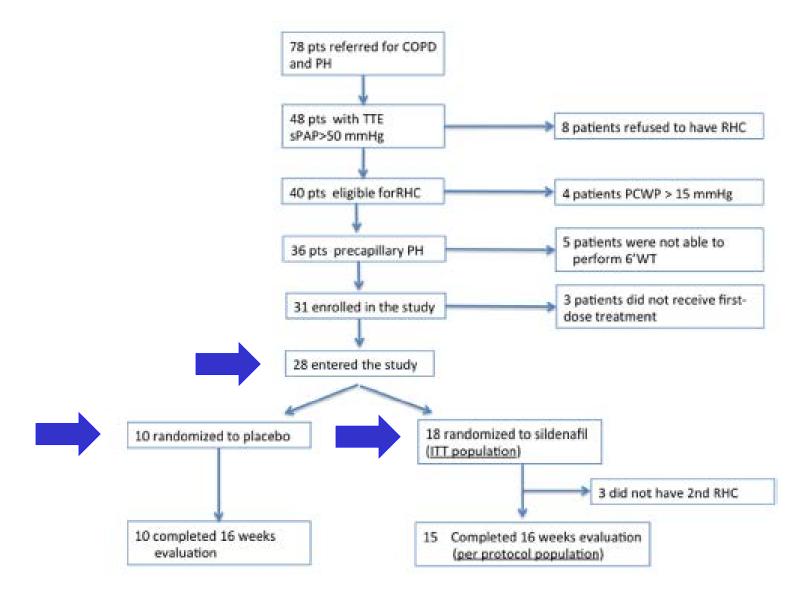
Objective response to therapy in 7 / 43, based on improvements in WHO functional class (n=3) or a 20% fall in PVR (n=4/7)

Sildenafil in severe pulmonary hypertension associated with chronic obstructive pulmonary disease: A randomized controlled multicenter clinical trial

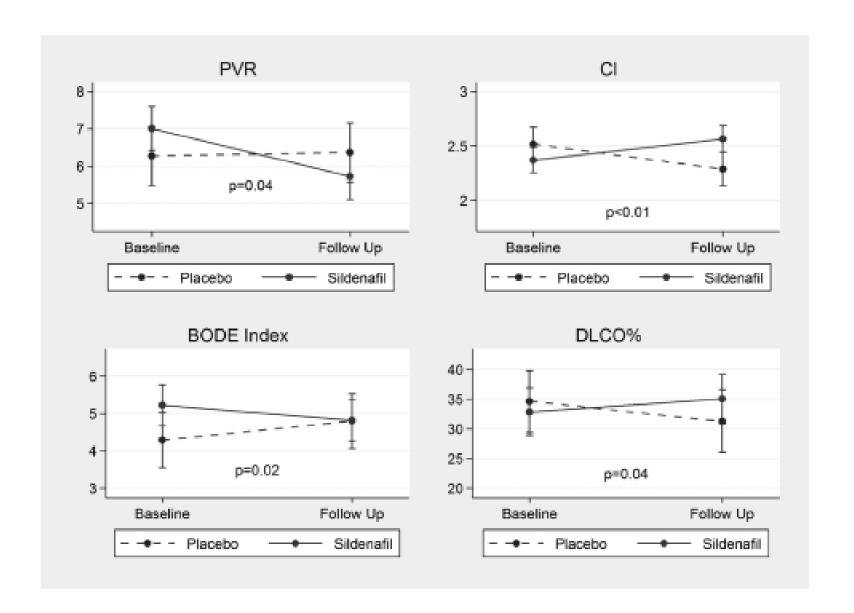
Vitulo P et al. J Heart Lung Transplant 2016

SPHERIC-1

An Italian multicenter, randomized, placebo-controlled double blind trial


Patients were randomized to receive 20 mg sildenafil or placebo 3 times a day (ratio 2:1)

Duration of study: 16 weeks


Primary endpoint: the reduction in pulmonary vascular resistance from baseline

Population: COPD patients (GOLD stage II and III) with associated pulmonary hypertension submitted to RHC, PFT, 6MWT, MMRC scale, ABG at time 0 and after 16 weeks of treatment.

SPHERIC-1

SPHERIC-1 - RESULTS

SPHERIC-1 - RESULTS

Variable	Placebo (n = 10) Mean (SE)	Sildenafil (n = 18) Mean (SE)	Difference in change (95% CI)	p-valu
	riedii (SE)	riedii (SE)		p-vatu
PVR, WU Baseline	6.27 (0.79)	7.01 (0.59)		
Follow-up	6.36 (0.79)	5.72 (0.62)		
Change	0.09	-1.29	-1.38 (≤ -0.05)	0.04
Total PVR, WU	0.09	-1.29	-1.56 (≤ -0.05)	0.04
Baseline	9.21 (0.95)	9.70 (0.70)		
Follow up	9.34 (0.95)	8.03 (0.74)		
Change	0.13	-1.67	-1.80 (≤ -0.21)	0.03
RAP, mm Hg	0.13	-1.07	-1.80 (≤ -0.21)	0.03
Baseline	9.00 (1.24)	7 29 (0 02)		
Follow-up	8.20 (1.24)	7.28 (0.92) 8.56 (1.00)		
Change	-0.80	1.28	2.08 (≥ -0.86)	NS
mPAP, mm Hq	-0.00	1.20	2.00 (2 -0.00)	113
Baseline	39.10 (2.85)	39.33 (2.13)		
Follow-up	36.70 (2.85)	35.49 (2.28)		
Change	-2.40	-3.84	$-1.44 (\le 4.44)$	NS
Cardiac index liters/min/m²	-2.40	-3.04	-1.44 (\(\) 4.44)	143
baseune	2.5 (0.2)	2.4 (0.1)		
Follow-up	2.3 (0.2)	2.6 (0.1)		
Change	-0.2	0.2	0.4 (≥ 0.2)	0.004
Stroke volume index, ml/m²	-0.2	0.2	0.4 (2 0.2)	0.004
Baseline	33.2 (2.3)	29.4 (1.7)		
Follow-up	30.3 (2.3)	34.1 (1.8)		
Change	-2.9	4.7	7.6 (≥ 3.7)	0.000
SVR, WU	-2.3	4.7	7.0 (2 5.7)	0.000
Baseline	2.89 (0.41)	2.73 (0.31)		
Follow-up	3.33 (0.42)	2.48 (0.33)		
Change	0.44	-0.25	-0.69 (≤ -0.24)	0.006
leart rate, beats/min	0.11	0.25	0.05 (= -0.24)	0.000
Baseline	77.8 (3.3)	82.0 (2.4)		
Follow-up	76.5 (3.3)	75.3 (2.6)		
Channel up	70.5 (5.5)	75.5 (2.0)	5 / / - / / 2)	

-6.7

 $-5.4 \ (\leq 1.13)$

0.09

-1.3

Change

SPHERIC-1 - RESULTS

Table 4 BODE Score With Individual Components of Patients Who Received the Last Dose of Sildenafil or Placebo (Intention-to-Treat Analysis)

	Placebo (n = 10)	Sildenafil (n = 18)	Difference in change (95% CI)	
Variable	Mean (SE)	Mean (SE)		<i>p-</i> value
BODE index				
Baseline	4.29 (0.74)	5.22 (0.55)		
Follow-up	4.80 (0.73)	4.82 (0.56)		
Change	0.51	-0.40	-0.92 (≤ -0.20)	0.02
6MWT, m				
Baseline	308.5 (31.7)	229.2 (23.6)		
Follow-up	297.3 (32.0)	237.3 (24.2)		
Change	-11.2	8.1	$-19.3(\ge -8.99)$	NS
BMI, kg/m				
Baseline	24.93 (1.71)	27.22 (1.27)		
Follow-up	25.64 (1.71)	27.47 (1.28)		
Change	0.71	0.25	-0.46 (≤ 0.11)	0.09
MMRC scale				
Baseline	2.31 (0.28)	3.00 (0.20)		
Follow-up	2.40 (0.27)	2.49 (0.21)		
Change	0.09	-0.51	$-0.60 (\le -0.31)$	0.03
FEV ₁ , % predicted			, , ,	
Baseline	48.41 (7.11)	54.38 (5.30)		
Follow-up	45.63 (7.11)	54.60 (5.35)		
Change	-2.78	0.21	2.99 (≥ -1.58)	NS

SPHERIC-1 Adverse events

 Only in five patients and they were mild to moderate and icluded headache, diarrhea, flushing, limb pain, myalgia, peripheral edema and dyspnea

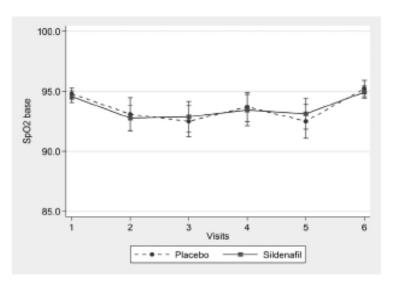


Figure 4 Trend of rest peripheral capillary oxygen saturation (Spo₂) at the scheduled visits

Absence of a detrimental effect of sildenafil on gas exchange (alveolar-arterial O2 gradient and Pao2)

SPHERIC-1 - CONCLUSIONS

Sildenafil (20 mg three times a day) improves PVR, CI and DLCO in PH-COPD patients, in absence of detrimental effect on gas exchange

No improvement in 6MWT-distance

The main limitation of the study is the small sample size

No information on sildenafil dose titration were reported

Another limitation is due the short observation time

Recommendations for pulmonary hypertension due to lung diseases

Recommendations	Classa	Level ^b	Ref. ^c
Echocardiography is recommended for the non-invasive diagnostic assessment of suspected PH in patients with lung disease	1	С	403, 405
Referral to an expert centre is recommended ^d in patients with echocardiographic signs of severe PH and/or severe right ventricular dysfunction	ı	U	
The optimal treatment of the underlying lung disease, including long-term O_2 therapy in patients with chronic hypoxaemia, is recommended in patients with PH due to lung diseases		U	169
Referral to PH expert center should be considered for patients with signs of severe PH/severe RV failure for individual-based treatment	lla	U	
RHC is not recommended for suspected PH in patients with lung disease, unless therapeutic consequences are to be expected (e.g. lung transplantation, alternative diagnoses such as PAH or CTEPH, potential enrolment in a clinical trial)	ııı	O	169
The use of drugs approved for PAH is not recommended in patients with PH due to lung diseases	ш	U	411– 416