PROGRAMMA

MALATTIE RESPIRATORIE: UN APPROCCIO MULTIDISCIPLINARE

MILANO La Gare Hotel Milano

SABATO 10 marzo 2018

	Moderatore: Claudio Micheletto, Legnago
11.00	L'asma severo: i nuovi target di terapia e i nuovi farmaci
	Fablo Ricclardolo, Torino
11.20	l nuovi target molecolari nella terapia del cancro del polmone
	Giuseppe Pelosi, Milano
11.40	Metabolismo osseo e malattie respiratorie
	Luigi Sinigagila, Milano
12.00	Malattle respiratorie e steroidi
	Maura Arosio, Milano
12.20	ll paziente iperteso con patologie respiratorie
	Chiara Lonati, Milano
12.40	Discussione

New molecular targets in lung cancer therapy

Giuseppe Pelosi

University of Milan Pathology Division, Science & Technology Park, IRCCS Multimedica, Milan

Subtyping

Subtyping

- Oncogene addiction (EGFR, ALK, ROS1)
- **Clinics** (age, PS, comorbidities)

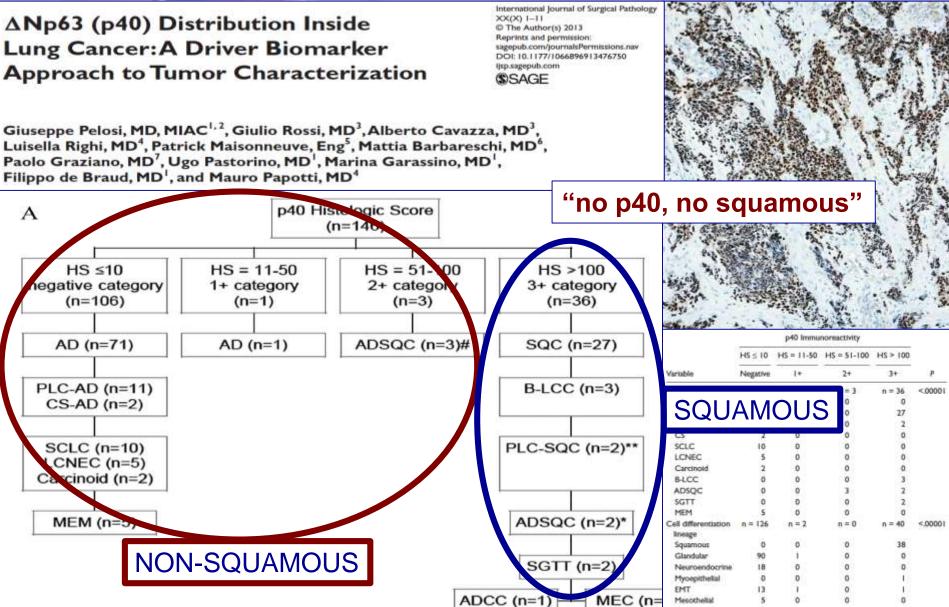
Linee guida

NEOPLASIE DEL POLMONE

Edizione 2017

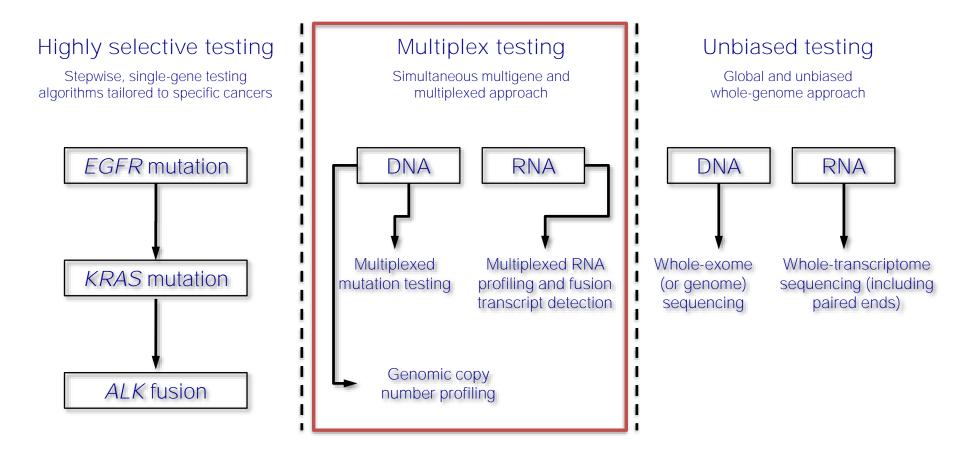
Aggiornamento 27 ottobre 2017

- PD-L1 expression (TPS)
- **Clinics** (age, PS, comorbidities)



No oncogene

addiction



Advanced lung cancer: subtyping

Molecular diagnostics

Taylor BS & Ladanyi M – J Pathol 2011

Present

Multiplex testing by targeted NGS Oncomine Comprehensive Assay v3

н	otspot genes		I	- ull-length ge	enes	Copy nu	umber genes	Gene fus	ions (inter- ar	nd intragenic)
AKT1FOXL2ALKGATA2ARGNA111ARAFGNAQBRAFGNASBTKHNF1ACBLHRASCDK4IDH1CHEK2IDH2CSF1RJAK1CTNNB1JAK2DDR2JAK3EGFRKDRERBB2KITERBB4KRASESR1MAGOHEGFR1MAP2K2FGFR2MAPK1FGFR3MAXFLT3MED12	SMO SPOP SRC	AKT2 AKT3 AXL CCND1 CDK6 ERCC2 FGFR4 H3F3A HIST1H3B MAP2K4 MDM4 MYC MYCN NTRK1 NTRK1 NTRK1 NTRK2 PDGFRB PIK3CB ROS1 SMAD4 TERT TOP1	ATM BAP1 BRCA1 BRCA2 CDKN2A FBXW7 MSH2 NF1 NF2 NOTCH1 PIK3R1 PTCH1 PTCH1 PTCH1 PTCH1 PTCH1 SMARCB1 STK11	TP53 TSC1 TSC2 ARID1A ATR ATRX CDK12 CDKN2B CHEK1 CREBBP FANCA FANCA FANCD FANCI MLH1 MRE11A	MSH6 NBN NOTCH2 NOTCH3 PALB2 PMS2 POLE RAD50 RAD510 RAD510 RAD510 RAD510 RAD510 RAD510 RAD510 SEX4 SLX4 SMARCA4	AKT1 AR CCND1 CDK4 CDK6 EGFR ERBB2 FGFR1 FGFR2 FGFR3 FGFR4 FLT3 IGF1R KIT KRAS MDM2 MDM4 MET MYCL MYCL MYCL MYCN PDGFRA PIK3CA	PPARG TERT AKT2 AKT3 ALK AXL BRAF CCND2 CCND3 CDK2 CDKN2A CDKN2B ESR1 FGF19 FGF3 NTRK1 NTRK2 NTRK3 PDGFRB PIK3CB RICTOR TSC1 TSC2	ALK AXL BRAF EGFR ERBB2 ERG ETV1 ETV4 ETV5 FGFR1 FGFR2 FGFR3 NTRK1 NTRK3 PDGFRA PPARG RAF1	RET ROS1 AKT2 AR BRCA1 BRCA2 CDKN2A ERB84 ESR1 FGR FLT3 JAK2 KRAS MDM4 MET MYB MYBL1	NF1 NOTCH1 NRG1 NTRK2 NUTM1 PDGFRB PIK3CA PRKACA PRKACB PTEN RAD51B RB1 RELA RSP02 RSP03 TERT

Oncomine Focus Assay

CATEGORIZED BY SOMATIC ALTERATION TYPE CATEGORIZED BY PUBLISHED RELEVANCE

Hotspot mutations

AKT1, ALK, AR, BRAF, CDK4, CTNNB1, DDR2, EGFR, ERBB2, ERBB3, ERBB4, ESR1, FGFR2, FGFR3, GNA11, ENAO, HRAS, IDH1, IDH2, JAK1, JAK2, JAK3, KIT, KRAS, MAP2K1, MAP2K2, MET, MTOR, NRAS, POGFRA, PIK3CA, RAF1, RET, ROS1, SMO

Focal CNV gains

ALK, AR, BRAF, CCND1, CDK4, CDK6, EGFR, ERBB2, FGFR1, FGFR2, FGFR3, FGFR4, KIT, KRAS, MET, MYC, MYCN, PDGFRA, PIK3CA

Fusion drivers

ABL1, AKT3, ALK, AXL, BRAF, EGFR, ERBB2, ERG, ETV1, ETV4, ETV5, FGFR1, FGFR2, FGFR3, MET, NTRK1, NTRK2, NTRK3, PDGFRA, PPARG, RAF1, RET, ROS1

Labels

ALK, BRAF, EGFR, ERBB2, KRAS, NRAS

Guidelines

ALK, BRAF, EGFR, ERBB2, KIT, KRAS, MET, NRAS, PDGFRA, RET, ROS1

Drug targets

ABL1, AKT1, AKT3, ALK, AR, AXL, BRAF, CCND1, CDK4, CDK6, CTNNB1, DDR2, EGFR, ERBB2, ERBB3, ERBB4, ESR1, FGFR1, FGFR2, FGFR3, FGFR4, IDH1, IDH2, JAK1, JAK2, JAK3, KIT, KRAS, MAP2K1, MAP2K2, MET, MTDR, MVC, NTRK1, NTRK2, NTRK3, PDGFRA, PIK3CA, PPARG, RAF1, RET, ROS1, SMO

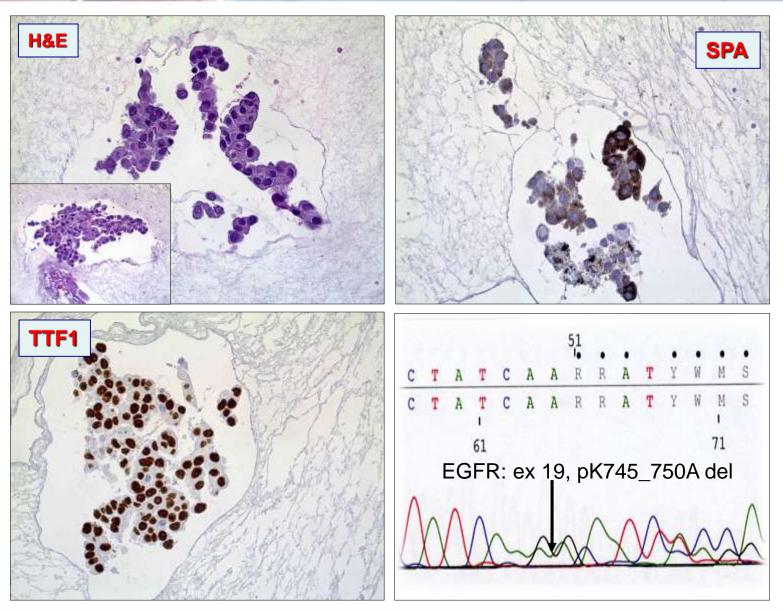
Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors

Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology Journal of Thoracic Oncology 2017

Neal I. Lindeman, MD,^{a,*} Philip T. Cagle, MD,^c Dara L. Aisner, MD, PhD,^d Maria E. Arcila, MD,^e Mary Beth Beasley, MD,^g Eric Bernicker, MD,^h Carol Colasacco, MLIS, SCT(ASCP),[†] Sanja Dacic, MD, PhD,[†] Fred R. Hirsch, MD, PhD,^k Keith Kerr, MB, ChB,[†] David J. Kwiatkowski, MD, PhD,^b Marc Ladanyi, MD,^f Jan A. Nowak, MD, PhD,^m Lynette Sholl, MD,^a Robyn Temple-Smolkin, PhD,ⁿ Benjamin Solomon, MBBS, PhD,^o Lesley H. Souter, PhD,^P Erik Thunnissen, MD, PhD,^g Ming S. Tsao, MD,^f Christina B. Ventura, MPH, MT(ASCP),[†] Murry W. Wynes, PhD,⁵ Yasushi Yatabe, MD, PhD^t

 "Testing should extend beyond those molecular alterations for which targeted therapies are approved by regulatory agencies...to include molecular alterations for which there is compelling evidence of effective investigational targeted therapies (and, more recently, immunotherapies) from published clinical trials"

Lindeman et al, JTO 2017



- "Must-test" biomarkers: EGFR, ALK, ROS1, PD-L1 by all laboratories
- "Should-test" biomarkers: an expanded panel (BRAF, MET, RET, HER2, KRAS)
- "Investigational" biomarkers: all the other genes

Table 3. Summary of the Updated Statements With Strength of Recommendations

2013 Statement	2017 Statement
Expert consensus opinion: Cytologic samples are also suitable for EGFR and ALK testing, with cell blocks being preferred over smear preparations.	Recommendation: Pathologists may use either cell blocks or other cytologic preparations as suitable specimens for lung cancer biomarker molecular testing.
Expert consensus opinion: Laboratories should use EGFR test methods that are able to detect mutations in specimens with at least 50% cancer cell content, although laboratories are strongly encouraged to use (or have available at an external reference laboratory) more sensitive tests that are able to detect mutations in specimens with as little as 10% cancer cells.	Expert consensus opinion: Laboratories should use, or have available at an external reference laboratory, clinical lung cancer biomarker molecular testing assays that are able to detect molecular alterations in specimens with as little as 20% cancer cells.
Recommendation: Immunohistochemistry for total EGFR is not recommended for selection of EGFR TKI therapy.	Strong recommendation: Laboratories should not use total EGFR expression by IHC testing to select patients for EGFR targeted TKI therapy.

Advanced lung cancer: ALK

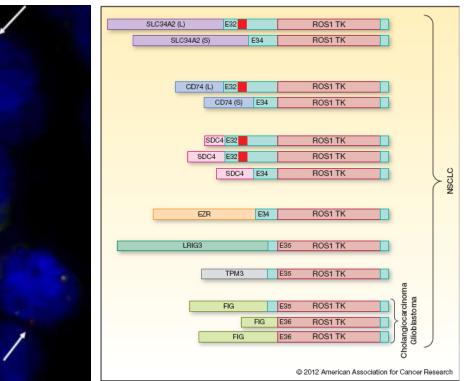
Study	TP	FP	FN	TN	Antibody	Cut-Off	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Conde 2014145	46	0	1	56	5A4	2-3+	0.98 [0.89, 1.00]	1.00 [0.94, 1.00]		
Conde 2014b 145	46	0	1	56	D5F3	2-3+	0.98 [0.89, 1.00]	1.00 [0.94, 1.00]		-
Cutz 2014 ¹⁴⁶	18	29	0	326	5A4	At least 1+	1.00 [0.81, 1.00]	0.92 [0.88, 0.94]		-
Gruber 2015 ¹⁵³	19	0	1	198	D5F3	At least 1+	0.95 [0.75, 1.00]	1.00 [0.98, 1.00]		
Ilie 201561	21	2	5	149	5A4	At least 1+	0.81 [0.61, 0.93]	0.99 [0.95, 1.00]		-
Lantuejoul 2015 ¹⁵⁴	127	108	13	292	5A4/D5F3	At least 1+	0.91 [0.85, 0.95]	0.73 [0.68, 0.77]	-	-
McLeer-Florin 2012 ¹³⁹	19	1	2	59	5A4	At least 1+	0.90 [0.70, 0.99]	0.98 [0.91, 1.00]		-8
Minca 2013142	32	0	0	217	D5F3	pos or neg	1.00 [0.89, 1.00]	1.00 [0.98, 1.00]		
Park 2012141	25	3	0	234	5A4	At least 1+	1.00 [0.86, 1.00]	0.99 [0.96, 1.00]		-
Savic 2015 ¹⁵⁵	29	2	з	269	5A4/D5F3	At least 1+	0.91 [0.75, 0.98]	0.99 [0.97, 1.00]		-
Shan 2014 ¹⁵¹	36	8	0	242	D5F3	pos or neg	1.00 [0.90, 1.00]	0.97 [0.94, 0.99]		-
Sholl 2013140	13	0	1	162	5A4	pos or neg	0.93 [0.66, 1.00]	1.00 [0.98, 1.00]		
Tantraworasin 2014147	8	13	2	244	5A4	pos or neg	0.80 [0.44, 0.97]	0.95 [0.92, 0.97]		
To 2013 ¹⁴³	20	0	0	331	5A4	2-3+	1.00 [0.83, 1.00]	1.00 [0.99, 1.00]		
Wang 2014 ¹⁴⁸	46	7	0	377	D5F3	At least 1+	1.00 [0.92, 1.00]	0.98 [0.96, 0.99]		

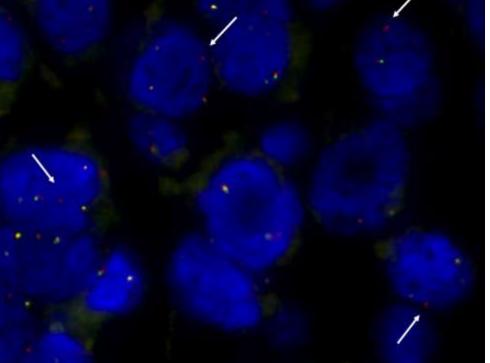
IHC 2+/3+ using mAb 5A4 and/or D5F3

Pooled estimate:

0.9914 (0.9716-0.9975)

0.9656 (0.9254-0.9845)




Advanced lung cancer: ROS-1

Study	ΤР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Cha 2014 ⁴²	13	16	0	301	1.00 [0.75, 1.00]	0.95 [0.92, 0.97]		
Mescam-Mancini 201443	9	3	0	95	1.00 [0.66, 1.00]	0.97 [0.91, 0.99]		-
Shan 201547	10	2	3	45	0.77 [0.46, 0.95]	0.96 [0.85, 0.99]		
Sholl 201344	8	4	0	44	1.00 [0.63, 1.00]	0.92 [0.80, 0.98]		
Yoshida 2014 ⁴⁵	16	33	1	220	0.94 [0.71, 1.00]	0.87 [0.82, 0.91]		

IHC 2+/3+ using mAb D4D6

Pooled estimate: 0.9587 (0.7075-0.9955)

0.9352 (0.8900-0.9626)

"Should-test" biomarkers

Table 4. Summary of 2017 Guideline Statements

Lindeman et al, JTO 2017

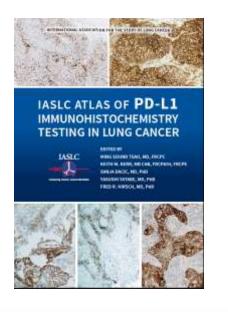
Guideline Statements	Strength of Recommendation
Key Question 1: Which new genes should be tested for lung cancer patients?	
1. <i>ROS1</i> testing must be performed on all lung adenocarcinoma patients, irrespective of clinical characteristics.	Strong recommendation
 ROS1 IHC may be used as a screening test in lung adenocarcinoma patients; however, positive ROS1 IHC results should be confirmed by a molecular or cytogenetic method. 	Expert consensus opinion
3. BRAF molecular testing is currently not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include BRAF as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative.	Expert consensus opinion
4. RET molecular testing is not recommended as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include RET as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative.	Expert consensus opinion
5. <i>ERBB2</i> (<i>HER2</i>) molecular testing is not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include <i>ERBB2</i> (<i>HER2</i>) mutation analysis as part of a larger testing panel performed either initially or when routine <i>EGFR</i> . <i>ALK</i> . and <i>ROS1</i> testing are negative.	Expert consensus opinion
6. KRAS molecular testing s not indicated as a routine stand-alone assay as a sole determinant of targeted therapy. It is appropriate to include KRAS as part of larger testing panels performed either initially or when routine EGFR. ALK. and ROS1 testing are negative.	Expert consensus opinion
7. MET molecular testing is not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include MET as part of larger testing panels performed either initially or when routine EGFR. ALK. and ROS1 testing are negative.	Expert consensus opinion

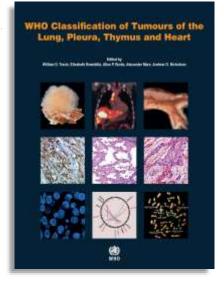
"Investigational" biomarkers

Table 5. Emerging Markers for Molecular Testing in LungCancerLindeman et al, JTO 2017

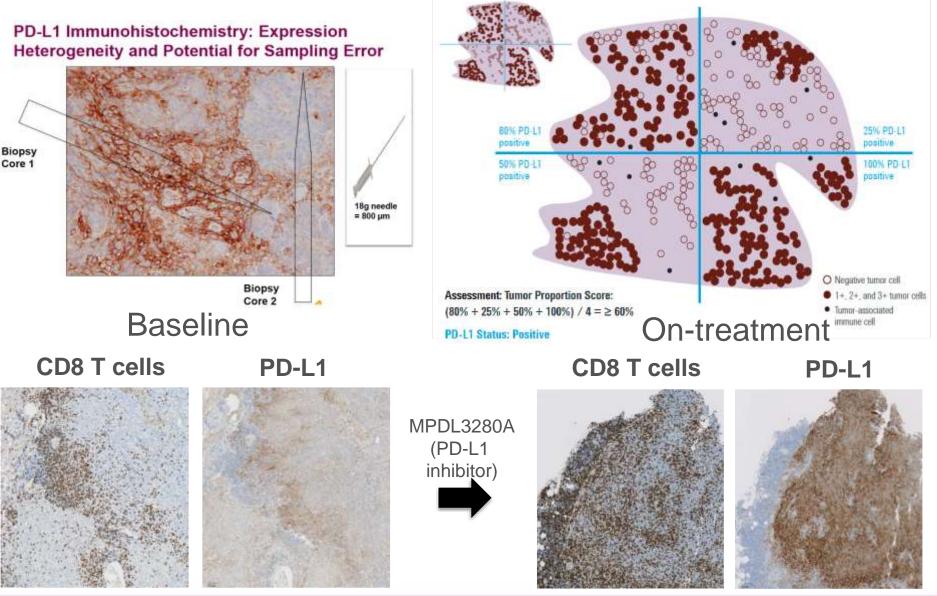
Mitogen-activated protein kinase kinase 1 (MEK1/MAP2K1) Fibroblast growth factor receptor 1-4 (FGFR 1-4) Neurotrophic tyrosine kinase, receptor, type 1-3 (NTRK1-3) Neuregulin 1 (NRG1) Ras-like without CAAX 1 (RIT1) Neurofibromin 1 (NF1) Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) AKT serine/threonine kinase 1 (AKT1) NRAS proto-oncogene, GTPase (NRAS) Mechanistic target of rapamycin (MTOR) Tuberous sclerosis 1 (TSC1) Tuberous sclerosis 2 (TSC2) KIT proto-oncogene receptor tyrosine kinase (KIT) Platelet-derived growth factor receptor alpha (PDGFRA) Discoidin domain receptor tyrosine kinase 2 (DDR2)

Molecular biomarkers


- 1. Targeted therapy: new targets
 - muts, fusions, CNVs
 - driver variations
 - actionable variations
 - immune checkpoint


2. Tumor heterogeneity

- cancer biology
- drug resistance
- 3. Classification
 - WHO & beyond
- 4. Prognosis



IASLC 18TH WORLD CONFERENCE ON LUNG CANCER October 15–18, 2017 | Yokohama, Japan

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

WWW.IASLC.ORG

Blueprint Phase 2 Team Members

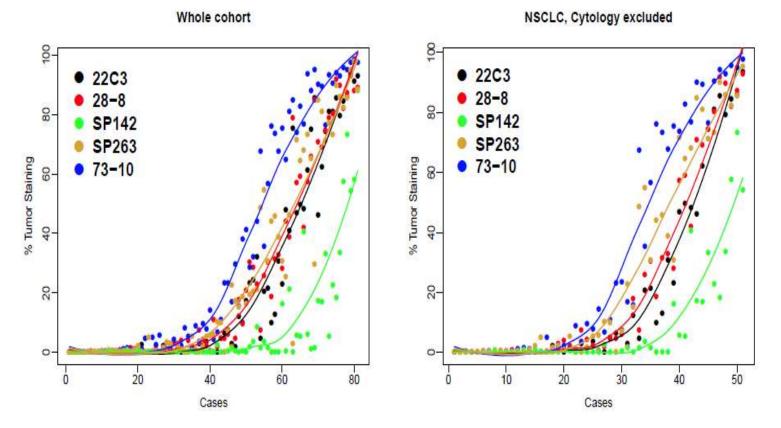
15 countries

5 continents

- M. S. Tsao (Toronto)
- M.-B. Beasley (New York)
- A. Borczuk (New York)
- A. Moreira (New York)
- J. Sauter (New York)
- W. D. Travis (New York)
- L. Chirieac (Boston)
- M. Mino-Kenudson (Boston)
- S. Dacic (Pittsburgh)
- I. Wistuba (Houston)
- F. R. Hirsch (Denver)
- H. Yu (Denver)
- M. Wynes (Denver)
- C. Poleri (Buenos Aires)

STATISTICS: M. Pintilie (Toronto)

- Y. Yatabe (Nagoya)
- M. Noguchi (Tokyo)
- K. M. Kerr (Aberdeen)
- A. G. Nicholson (London)
- S. Lantuejoul (Lyon)
- <u>G. Pelosi (Milan)</u>
- L. Bubendorf (Basel)
- J. Botling (Uppsula)
- E. Thunnissen (Amsterdam)
- M. Kockx (Antwerp)
- J.-H. Chung (Seoul)
- G. Chen (Shanghai)
- T.-Y. Chou (Taipei)
- P. Russell (Melbourne)



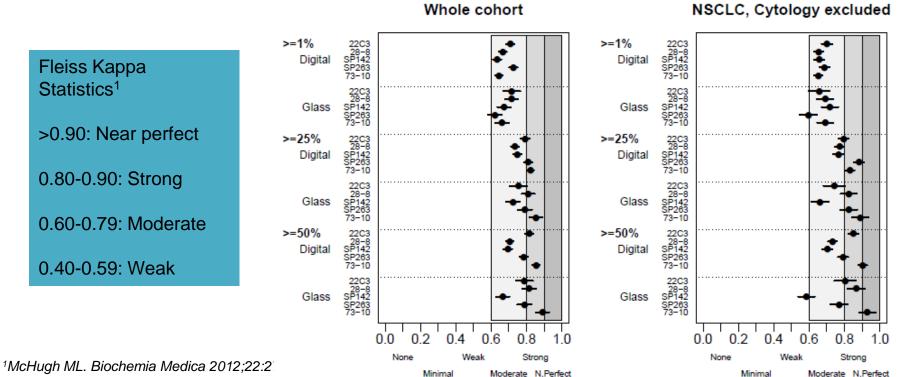
IASLC 18TH WORLD CONFERENCE ON LUNG CANCER October 15–18, 2017 | Yokohama, Japan

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

WWW.IASLC.ORG

Comparability among five assays on tumor cell staining

Each circle represents the mean of all scores (glass slide & digital combined)



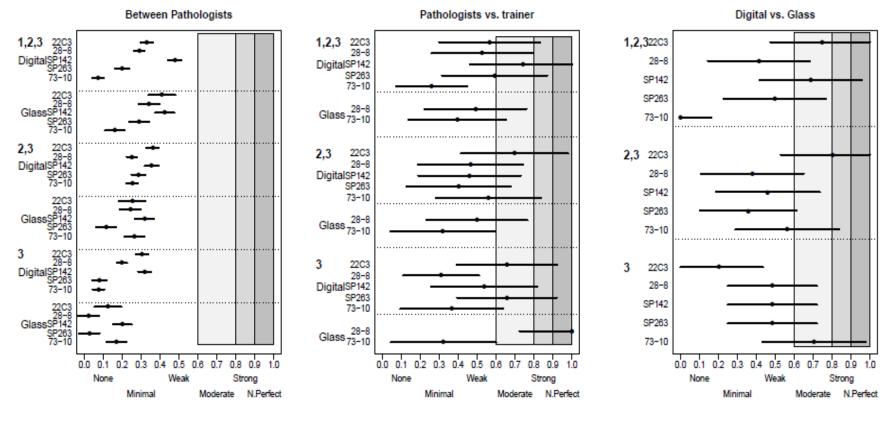
IASLC 18TH WORLD CONFERENCE ON LUNG CANCER October 15–18, 2017 | Yokohama, Japan

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

WWW.IASLC.ORG

Moderate to strong reliability among <u>all pathologists</u> on <u>tumor cell</u> scoring

82


IASLC 18TH WORLD CONFERENCE ON LUNG CANCER

October 15-18, 2017 | Yokohama, Japan

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

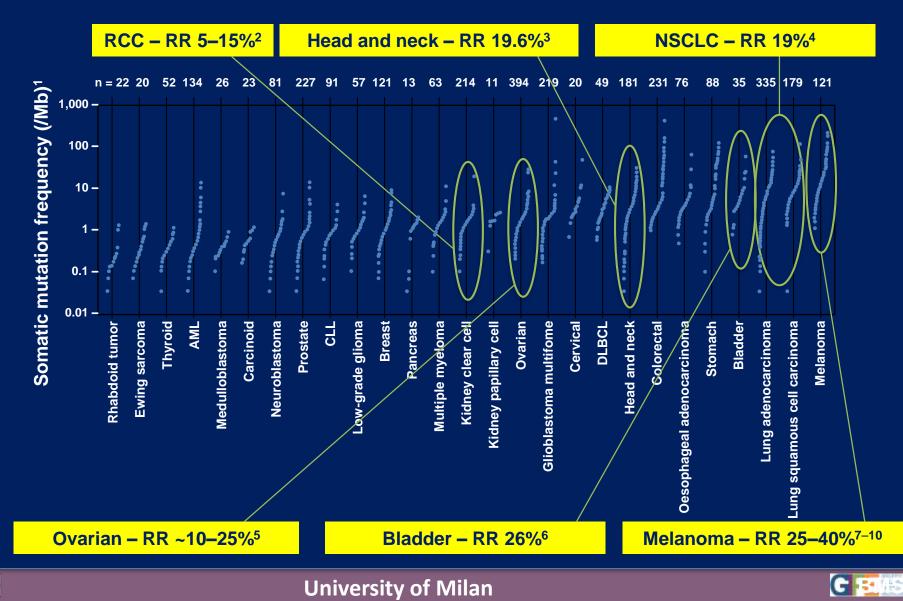
WWW.IASLC.ORG

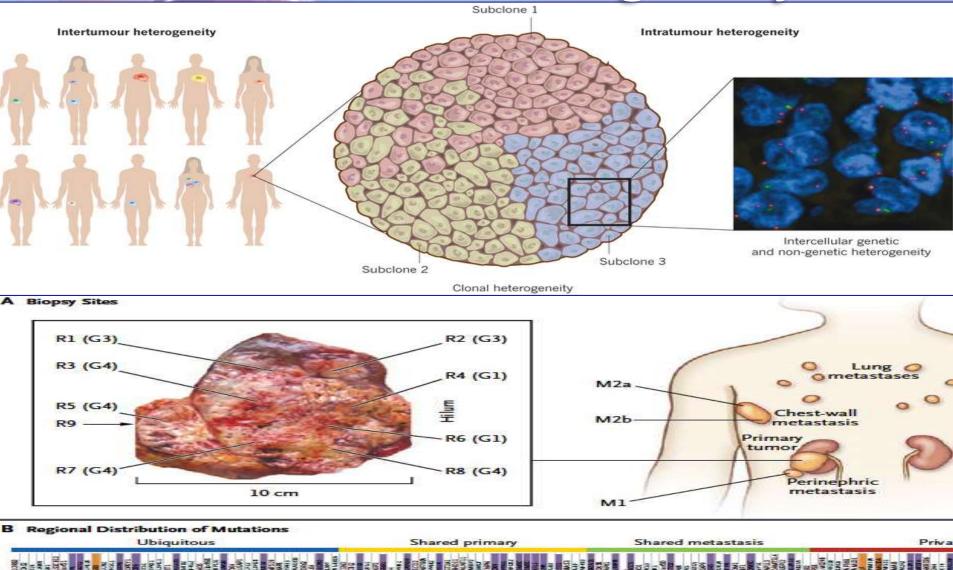
Poor reliability for immune cell scoring

Fleiss Kappa Statistics

0.60-0.79: Moderate

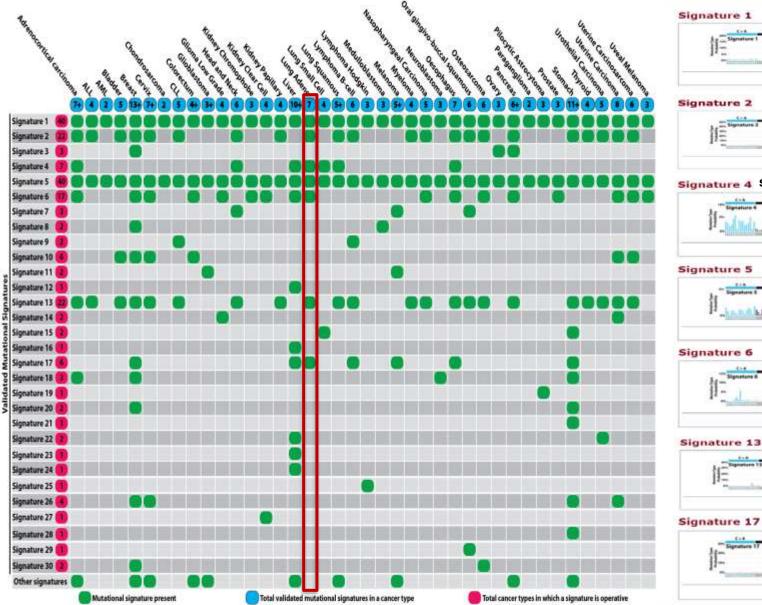
0.40-0.59: Weak 0

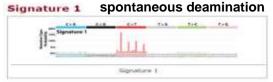

0.21-0.39: Minimal

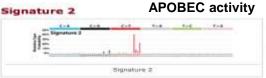


Tumor burden for immunotherapy

Mutation burden (WES, WGS, TNGS, mismatch repair deficiency)

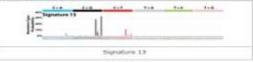

Tumor molecular heterogeneity



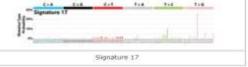


Tumor heterogeneity



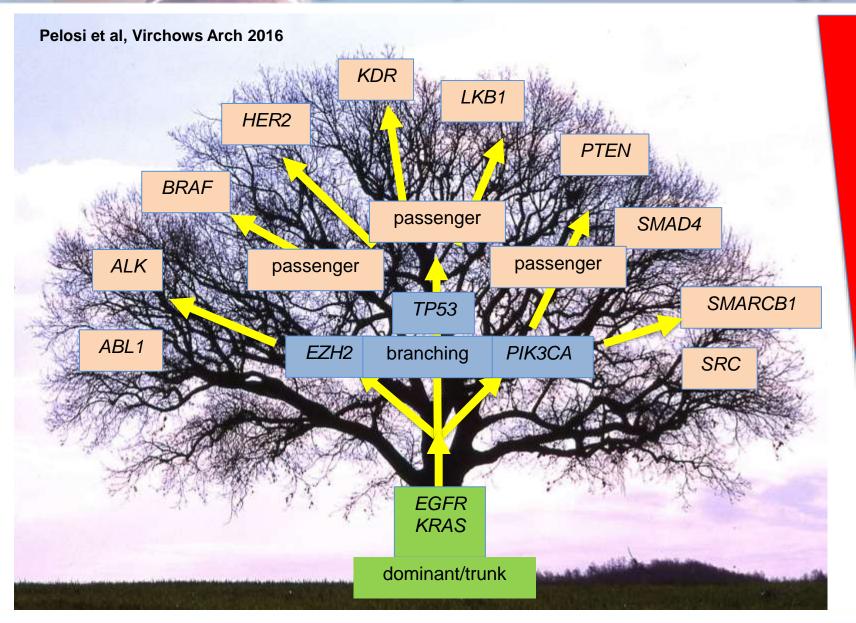

Signature 4 smoke-related DNA damage

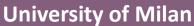
Signature 5 microsatellite instability



APOBEC activity

Signature 17


unknown



Tumor heterogeneity: cancer biology

Tumor heterogeneity: cancer biology

Hierarchizing mutations

Tumor heterogeneity: resistance

Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors

Lecia V. Sequist, *et al. Sci Transl Med* **3**, 75ra26 (2011); DOI: 10.1126/scitranslmed.3002003

F

F

F

F

F

M

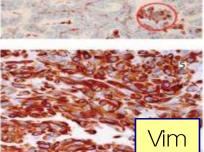
M

M

L858R

Exon 19 del

L858R


Exon 19 del

L858R

L858R

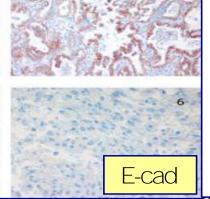
Exon 20 ins[‡]

L858R

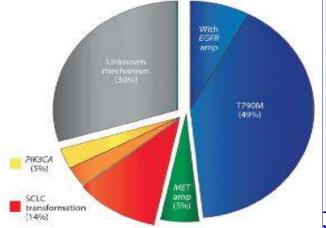
Adeno

Adeno

Adeno


Adeno

Adeno


Adeno

Adeno

Adeno

SCLO	transform	nation							
SCLC transformation									
SCLC tra	nsformatio	n, PIK3CA							
SCLO	SCLC transformation								
SCLO	transform	ation							
	EMT								
	EMT								
Sarcomatoid	CA, loss o	f <mark>β-catenin</mark>							

Erlo (22 months)	On
Erlo (3+ years)	On
Erlo (14 months)	On
Erlo (2+ years)	Off (2 months)
Erlo (18 months)	On
Erlo (11 months)	On
Gef (11 months)	On
Erlo (11 months)	Off (2 weeks)

University of Milan

22

23

24

25

26

27

28

29

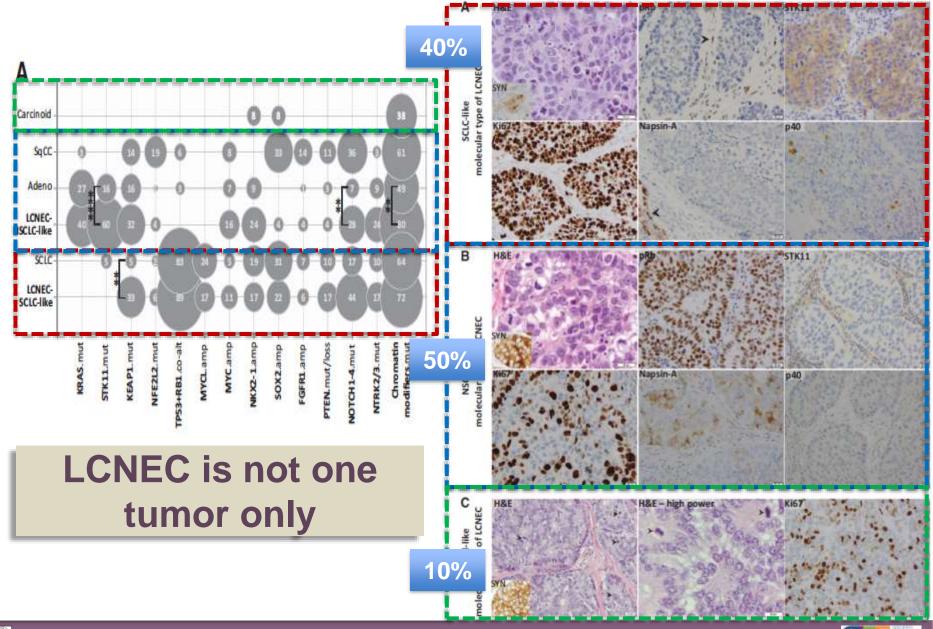
67

54

56

40

61


66

59

64

Tumor heterogeneity: classification

Tumor heterogeneity: therapy

Genetic subtypes of large cell neuroendocrine carcinoma (LCNEC) to predict response to chemotherapy. DOI: 10.1200/jCO.2017.35.15_suppl.9061

OURNAL OF CLINICAL ONCOLOGY

Journal of Clinical Oncology 35, no. 15_suppl

Jules Derks, Noémie Leblay, Robert Jan van Suylen, Erik Thunnissen, Michael den Bakker, Harry J.M. Groen, ... Egbert F. Smit, Ronald Damhuis, Esther van de Broek, Amélie Chabrier, Matthieu Foll, James McKay, Lynnette Fernandez-Cuesta, Ernst-Jan M. Speel, Anne-Marie C. Dingemans,

77 LCNEC TNGS: TP53 (87%), RB1 (46%), STK11 (13%), KEAP1 (18%) Co-mutation: TP53-RB1 (94%), STK11-KEAP1 (never RB1-STK11)

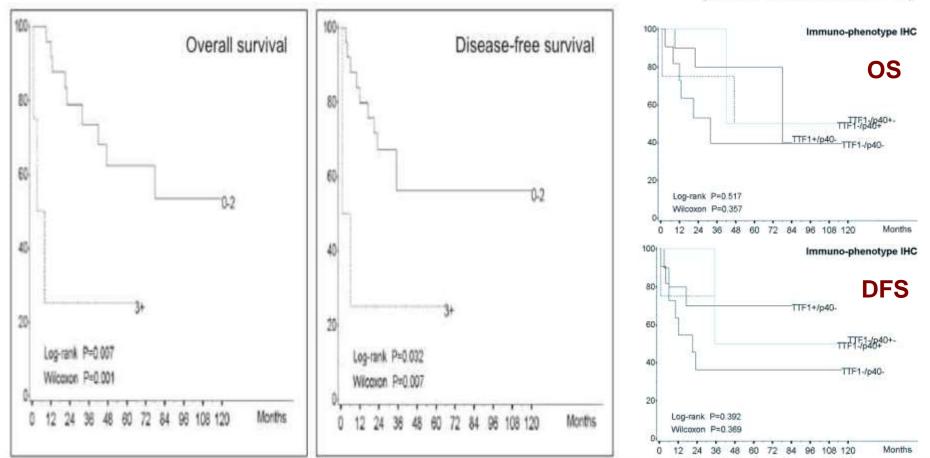
NSCLC-t: plat + gem/taxanes/pem **SCLC-t:** plat + etoposide

LCNEC not one tumor only!

RB1^{wt} \rightarrow NSCLC-t vs. SCLC-t \rightarrow 8.5 mo. vs 5.8 mo., p=0.05

without pemetrexed \rightarrow 9.6 mo. vs 5.8 mo. p=0.026 **RB1^{mut}** \rightarrow NSCLC-t vs. SCLC-t \rightarrow no differences

SCLC-ct. Conclusions: In LCNEC with RB1^{wt}, NSCLC-ct correlates with a more favorable outcome compared to SCLC-ct. However, RB1^{mt} LCNEC treated with NSCLCct do similarly worse as SCLC-ct. Prospective studies should be initiated.


Molecular matters for therapy

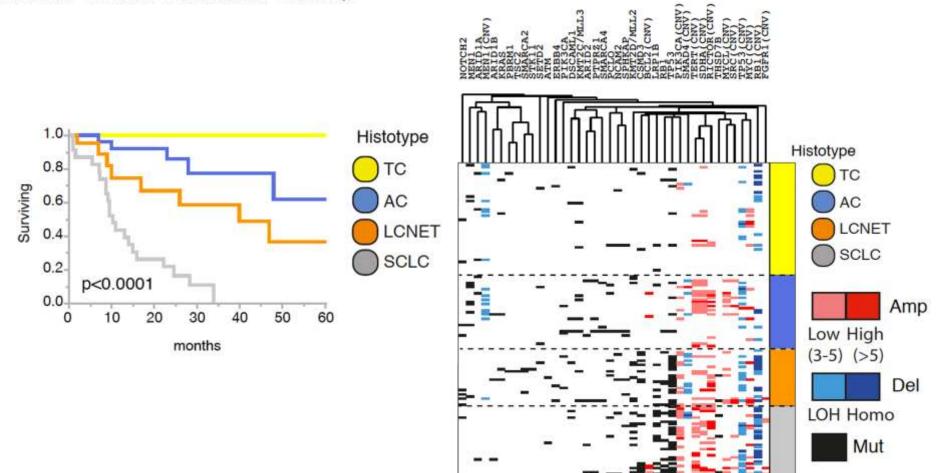
Tumor heterogeneity: prognosis

Dissecting Pulmonary Large-Cell Carcinoma by Targeted Next Generation Sequencing of Several Cancer Genes Pushes Genotypic–Phenotypic Correlations to Emerge

Giuseppe Pelosi, MD, MIAC, ** Alessandra Fabbri, MD, * Mauro Papotti, MD, ‡ Giulio Rossi, MD, § Alberto Cavazza, MD, || Luisella Righi, MD, ‡ Elena Tamborini, DSc, * Federica Perrone, DSc, * Giulio Settanni, DSc, * Adele Busico, DSc, * Maria Adele Testi, DSc, * Patrick Maisonneuve, Eng, ¶ Filippo De Braud, MD, # Marina Garassino, MD, # Barbara Valeri, MD, * Angelica Sonzogni, MD, * and Ugo Pastorino, MD**

(J Thorac Oncol. 2015;XX: 00–00)

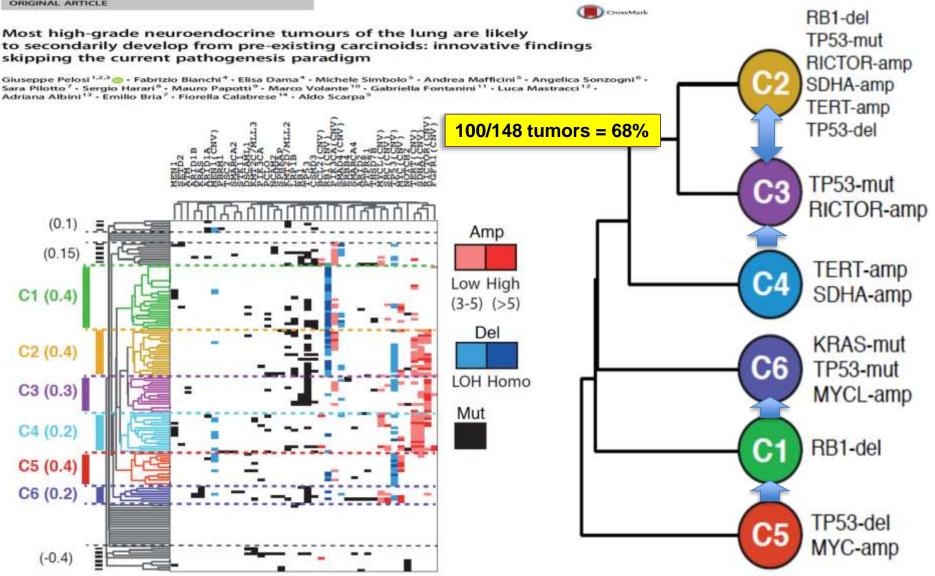
Tumor heterogeneity: pathogenesis


Virchows Archiv https://doi.org/10.1007/s00428-018-2307-3

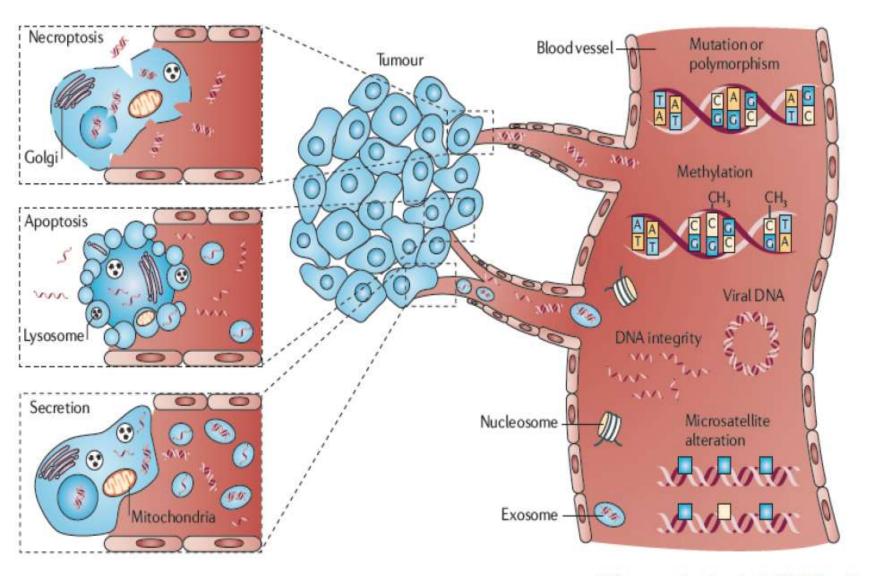
ORIGINAL ARTICLE

Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: innovative findings skipping the current pathogenesis paradigm

Giuseppe Pelosi^{1,2,3} 😳 - Fabrizio Bianchi⁴ - Elisa Dama⁴ - Michele Simbolo⁵ - Andrea Mafficini³ - Angelica Sonzogni⁶ - Sara Pilotto⁷ - Sergio Harari⁶ - Mauro Papotti⁹ - Marco Volante¹⁰ - Gabriella Fontanini¹¹ - Luca Mastracci¹² - Adriana Albini¹³ - Emilio Bria⁹ - Fiorella Calabrese¹⁴ - Aldo Scarpa⁵



Tumor heterogeneity: pathogenesis


Virchows Archiv https://doi.org/10.1007/s00428-018-2307-3

ORIGINAL ARTICLE

Liquid biopsy to reassess over time

Schwarzenbach et al., Nat Rev Cancer 2011

cfDNA testing in liquid biopsy

 R: EGFR mutations when the tissue is an issue (also unwilling or unable patients)...but *if negative* try on tissue biopsy (also to exclude other resistance mechanisms)

Study	TP	FP	FN	TN	Detection System	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Douillard 2014 243	2 69	1	36	546	ARMs	0.66 [0.56, 0.75]	1.00 [0.99, 1.00]	-	
Kukita 2013 ²³⁴	9	1	3	10	PNA/LNA clamp	0.75 [0.43, 0.95]	0.91 [0.59, 1.00]		
Li 2014 ²⁴³	389	114	214	874	Multiple	0.65 [0.61, 0.68]	0.88 [0.86, 0.90]		
Mok 2015 235	72	6	24	136	allele-specific PCR	0.75 [0.65, 0.83]	0.96 [0.91, 0.98]		
Oxnard 2014 ²³²	14	5	7	20	ddPCR	0.67 [0.43, 0.85]	0.80 [0.59, 0.93]		
Sensitivity (<u>-80</u>)% ∙ s	neci	ficity	80-95%			0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Constituty		,,,,,	200	inoncy			Pooled estimate:	0.6640 (0.6272-0.6988)	0.9564 (0.8332-0.9897)

- ECO: Identifying EGFR T790M mutation in lung ADC patients with progression or secondary clinical resistance to EGFR-TKI
- No R: cfDNA & CTC cannot be used for diagnosis of primary lung cancer; CTC cannot be used for the identification of EGFR or other mutations or EGFR T790M

R: recommendation; ECO: expert consensus opinion

- Subtyping, essential
- Multiplexed testing, by far preferable to stand-alone genes
- Molecular classification for clinical handling, classification and prognosis
- cfDNA, a potential standard in EGFR TKI-treated lung cancer patients

