Guidelines for bronchiectasis

Professor James D Chalmers

British Lung Foundation Chair of Respiratory Research,

Chair of EMBARC

University of Dundee, UK

European Respiratory Society guidelines for the management of adult bronchiectasis

Eva Polverino¹, Pieter C. Goeminne^{2,3}, Melissa J. McDonnell^{4,5,6}, Stefano Aliberti ⁰⁷, Sara E. Marshall⁸, Michael R. Loebinger⁹, Marlene Murris¹⁰, Rafael Cantón¹¹, Antoni Torres¹², Katerina Dimakou¹³, Anthony De Soyza^{14,15}, Adam T. Hill¹⁶, Charles S. Haworth¹⁷, Montserrat Vendrell¹⁸, Felix C. Ringshausen¹⁹, Dragan Subotic²⁰, Robert Wilson⁹, Jordi Vilaró²¹, Bjorn Stallberg²², Tobias Welte¹⁹, Gernot Rohde²³, Francesco Blasi⁷, Stuart Elborn^{9,24}, Marta Almagro²⁵, Alan Timothy²⁵, Thomas Ruddy²⁵, Thomy Tonia²⁶, David Rigau²⁷ and James D. Chalmers²⁸

y @ERSpublications

The publication of the first ERS guidelines for bronchiectasis http://ow.ly/wQSO30dU0nE

Cite this article as: Polverino E, Goeminne PC, McDonnell MJ, et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J 2017; 0: 1700629 [https://doi.org/10.1183/13993003.00629-2017].

An international journal of RESPIRATORY MEDICINE

BRITISH THORACIC SOCIETY
GUIDELINE FOR BRONCHIECTASIS
IN ADULTS

British Thoracic Society Bronchiectasis in Adults Guideline Development Group

What is bronchiectasis

A radiological finding of dilatation of the bronchi (usually on CT scan)

A disease associated with cough, sputum production and frequent chest infections

Pathophysiology: Vicious Cycle hypothesis^{1,2}

Bronchial infection

- · Most frequently with Haemophilus influenzae, Pseudomonas aeruginosa
- Stimulate and sustain chronic lung inflammation

Comorbidities e.g. COPD, asthma³

Structural lung disease

emphysema

• Bronchial dilation, bronchial wall thickening, and mucus plugging, small airways disease and

Inflammation

- Primarily neutrophilic
- · Closely linked to persistent bacterial infection

Impaired mucociliary clearance

· Triggered by structural bronchiectasis, airway dehydration, excess mucus volume and viscosity

Chronic bronchial infection and inflammation are associated with an increased frequency of exacerbations²

Aetiological diagnosis of bronchiectasis

^{*}Routine screening not required unless the radiological investigations suggest basal emphysema.

α1-AT, alpha-1 antitrypsin; ABPA, allergic bronchopulmonary aspergillosis; AT, Antitrypsin; CF, cystic fibrosis; Cl-, Chloride ion concentration; CTD, connective tissue disease; CVID, common variable immune deficiency; EM, electron microscopy; HRCT, high resolution chest tomography; Ig, Immunoglobulin; NO, Nitric oxide; PCD, primary ciliary dyskinesia; PD, potential difference; RF, rheumatoid factor.

^{1.} Drain M, Elborn JS. Eur Respir Monograph 2011; 52:32-43; 2. British Thoracic Society Guidelines for Bronchiectasis in adults. 2018; (https://www.brit-thoracic.org.uk/standards-of-care/guidelines/bts-guidelines/bts

A general overview on bronchiectasis management

^{1.} Martinez-Garcia MA, et al. Arch Bronconeumol 2018; 54:88-98; 2. Drain M, Elborn JS. Eur Respir Monograph 2011; 52:32-43; 3. Polverino E, et al. Eur Respir J 2017; 50:1700629; 4. British Thoracic Society Guidelines for Bronchiectasis in adults. 2018; (https://www.brit-thoracic.org.uk/standards-of-care/guidelines/bts-guideline-for-bronchiectasis-in-adults-public-consultation/); 5. Chalmers JD, et al. Am J Respir Crit Care Med 2014; 189:576-85.

Treatment of bronchiectasis

CXCR2, Chemokine receptor 2.

^{1.} Polverino E, et al. Eur Respir J 2017; 50:1700629; 2. Martinez-Garcia MA, et al. Arch Bronconeumol 2018; 54:88-98; 3. British Thoracic Society Guidelines for Bronchiectasis in adults. 2018; (https://www.brit-thoracic.org.uk/standards-of-care/guidelines/bts-guideline-for-bronchiectasis-in-adults-public-consultation/).

Airway clearance

12 month study of 6% hypertonic saline

40 patients- 6% hypertonic saline vs 0.9% saline

Figure 2 SGRQ Totals. No significant difference between groups at any time point.

Figure 3 LCQ Totals. No significant difference between groups at any time point.

Lung function decline

Multivariate linear mixed model over 4 years follow-up

Exacerbations independently accounted for 11ml lung function decline per event

Other risk factors included

- Baseline FEV1
- Smoking
- Symptoms
- Airways disease

Lung function decline

Multivariate linear mixed model over 4 years follow-up

Exacerbations independently accounted for 11ml lung function decline per event

Other risk factors included

- Baseline FEV1
- Smoking
- Symptoms
- Airways disease

Lung function decline

Multivariate linear mixed model over 4 years follow-up

Exacerbations independently accounted for 12ml lung function decline per event

Other risk factors included

- Baseline FEV1
- Smoking
- Symptoms
- Airways disease

Could treatment prevent lung function decline

Hypothetical model of introducing a therapy at age 50, 60 and 70 which prevents exacerbations

Data shows a marked effect of exacerbation reduction which is greatest in patients with preserved lung function

ERS recommendations for long-term antibiotic treatment of bronchiectasis

- Acute exacerbations of bronchiectasis should be treated with 14 days of antibiotics in normal cases
- Long-term antibiotic treatment (≥ 3 months) should be offered to the patient in case of ≥ 3 exacerbations per year:

Macrolide therapy reduces pulmonary exacerbations¹

- 1 of 3 patients with bronchiectasis receive long-term macrolide treatment²
- Attention: Risk of developing a macrolide resistance
 - → Always culture (at least 3 times) for NTM before starting macrolide therapy

Individual patient data meta-analysis: macrolides

				Rate Ratio	Rate Ratio	
Study or Subgroup	log[Rate Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
BAT	-0.796	0.3225	23.4%	0.45 [0.24, 0.85]	5] ———	
BLESS	-0.449	0.2473	39.8%	0.64 [0.39, 1.04]	¥] ————————————————————————————————————	
EMBRACE	-0.862	0.2576	36.7%	0.42 [0.25, 0.70]	oj 	
Total (95% CI)			100.0%	0.51 [0.37, 0.69]	01 -	
Heterogeneity: $Chi^2 = 1.50$, $df = 2 (P = 0.47)$; $I^2 = 0\%$					0.2 0.5 1 2 5	
Test for overall effect: Z = 4.37 (P < 0.0001)					Favours macrolide Favours placebo	

Macrolides overall reduce exacerbations by 50%

Group	Macrolide	Placebo	NNT
1-2	0.32	1.0	1.5
3	0.77	1.35	1.7
4+	1.14	2.11	1.0

Largest benefit seen in patients with *Pseudomonas aeruginosa* where the benefit Is 64% (RR 0.36 (0.20-0.67)).

Inconsistent results with inhaled antibiotics

Summarized recommendation	Strength of	Quality of evidence
	recommendation	
Perform a minimum bundle of tests including differential blood count, serum immunoglobulins, and testing for ABPA in newly diagnosed patients	Conditional	Very low
Treat acute exacerbations of bronchiectasis with 14 days of antibiotics	Condition	Very low
Patients with a new isolation of Pseudomonas aeruginosa should be offered eradication antibiotic treatment	Conditional	Very low
Do not offer eradication antibiotic treatment to patients following new isolation of pathogens other than P. aeruginosa.	Conditional	Very low
Do not offer inhaled corticosteroids for the treatment of bronchiectasis	Conditional	Low
Do not offer statins for the treatment of bronchiectasis	Strong	Low
Offer long term antibiotic treatment for patients with three or more exacerbations per year*	Conditional	Moderate
Offer mucoactive treatment for aptients who have difficulty expectorating sputum and poor quality of life where standard airway clearance techniques have failed to control symptoms	Conditional	Low
Do not offer recombinant DNase for the treatment of bronchiectasis	Strong	Moderate
Do not routinely offer long acting bronchodilators for patients with bronchiectasis	Conditional	Very low
Offer long acting bronchodilators for patients with significant breathlessness on an individual basis	Conditional	Very low
Do not offer surgical treatments with the exception of patients with localised disease and high exacerbation frequency despite optimal medical care	Conditional	Very low
Patients with chronic productive cough or difficulty to expectorate should be taught airway clearance techniques	Conditional	Low
Patients with impaired exercise capacity should participate in pulmonary rehabilitation and take regular exercise	Strong	High

Treatment of bronchiectasis

CXCR2, Chemokine receptor 2.

^{1.} Polverino E, et al. Eur Respir J 2017; 50:1700629; 2. Martinez-Garcia MA, et al. Arch Bronconeumol 2018; 54:88-98; 3. British Thoracic Society Guidelines for Bronchiectasis in adults. 2018; (https://www.brit-thoracic.org.uk/standards-of-care/guidelines/bts-guideline-for-bronchiectasis-in-adults-public-consultation/).

"Treatable"

Chronic airway infection

- · Antibiotic therapy
 - Inhaled
 - Targeted
 - Macrolides

Pathogen acquisition

· Pseudomonas eradication therapy

Immunodeficiency

- · Ig replacement
- Prophylactic antibiotics

MTM

Antibiotic therapy

ABPA

- Corticosteroids
- · +/- antifungals

Airflow obstruction & Functional impairment

- · Pulmonary rehabilitation
- Bronchodilators

Sputum production

- Airway clearance
- · Mucoactive drugs

Asthma & eosinophilia

· Inhaled corticosteroids

Low BMI

Nutrition

GORD

- PPI
- · +/- prokinetics

Other comorbidities

· Treat appropriately

BRONCHIECTASIS "TRAITS"

"Other factors"

- Ethnic differences
- Environmental exposures
- Climatic variation
- Lifestyle factors

"Targetable"

(Endophenotypic)

Microbial (bacterial) dysbiosis

Probiotics

Mycobiome (fungal) dysbiosis

Anti-fungal

Neutrophil dysfunction

NE inhibitors

Protease mediated lung damage

· Protease inhibitors

Ciliary dysfunction (Primary or secondary)

- Airway clearance
- · CFTR potentiator therapy

Systemic inflammation & vascular dysfunction

Anti-inflammatory therapy

CFTR dysfunction

- CFTR potentiators MM
- · CFTR correctors

Innate immune deficiency

- TLR-based therapeutics
- Antibiotic prophylaxis

Acknowledgements

Executive group

Stefano Aliberti Eva Polverino

iABC co-ordinator

Stuart Elborn

Steering committee

Francesco Blasi Diana Bilton Wim Boerma Anthony De Soyza Katerina Dimakou Michael Loebinger Charlie Haworth Adam Hill Rosario Menendez Marlene Murris Felix Ringshausen **Antoni Torres** Montserrat Vendrell

Tobias Welte

Robert Wilson

This work has received support from the EU/EFPIA Innovative Medicines Initiative Joint Undertaking iABC grant agreement n° 115721

ELF

EMBARC India

Sneha Limaye

31 Investigators

Raja Dhar

Sarah Masefield Jeanette Boyd Pippa Powell Patient advisory grp.

Partners

"When you can't breathe... nothing else matters"

Partners

Advisory group

Tim Aksamit Anne O'Donnell Charles Feldman Oscar Rizzo Lucy Morgan

Study co-ordination

Megan Crichton Amelia Shoemark

www.bronchiectasis.eu