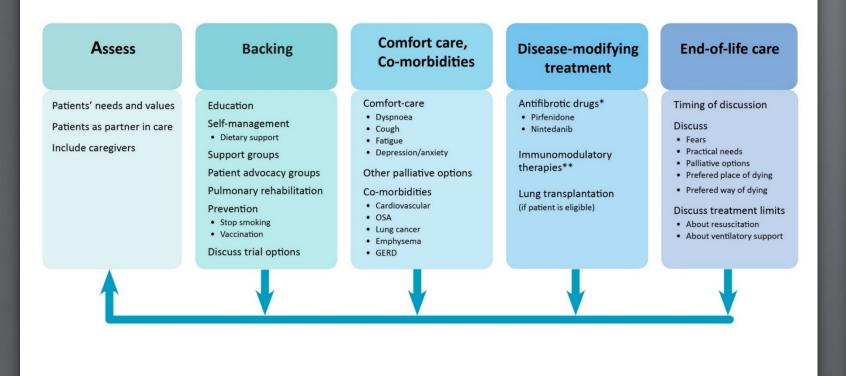


Thoraxklinik am Universitätsklinikum Heidelberg Kompetenz aus Tradition

The therapy of IPF - what's next? -

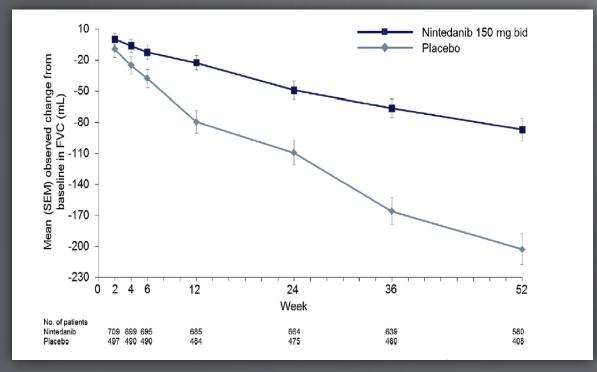
Michael Kreuter

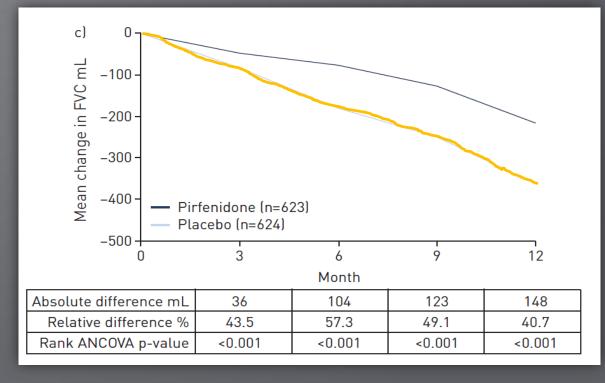
Center for rare and interstitial lung diseases Thoraxklinik, University of Heidelberg, Germany


Disclosures

- Fees for speaking and/or organising education were provided by: ERS, Almirall, Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, GlaxoSmithKline, InterMune, Novartis, Pfizer, Roche
- Fees for consulting were provided by: Boehringer Ingelheim, InterMune, GlaxoSmithKline, Galapagos, Roche
- Research funds, including institutional funds, were provided by: BMBF, DFG, InterMune, Hopp Stiftung, Lilly, Lungenfibrose e.V., Medac, Olympus, Roche, WATL, UKGM, German Center for Lung Research (DZL)

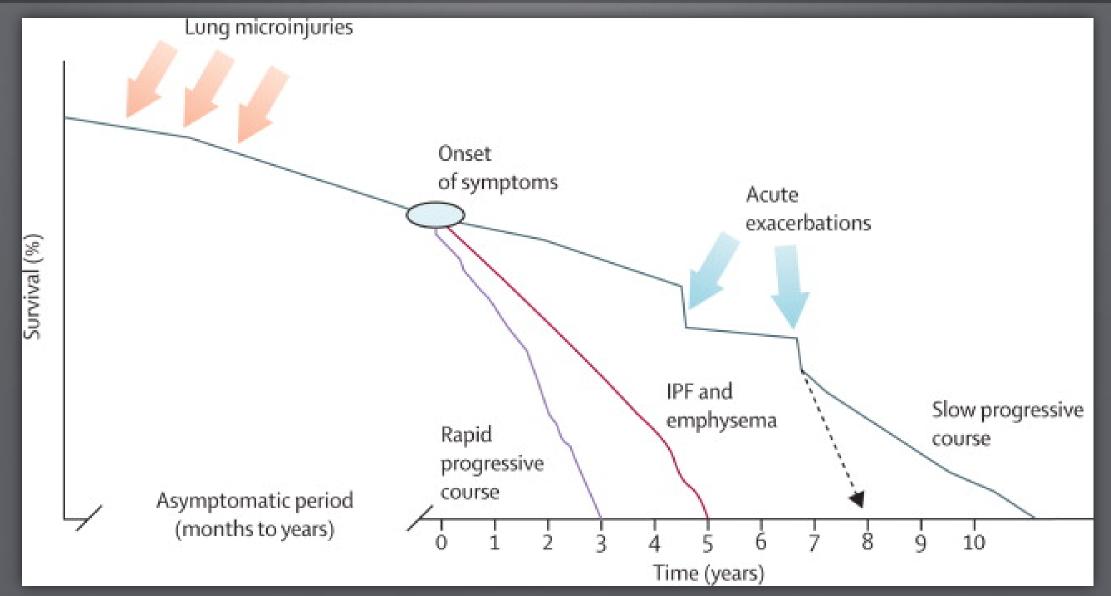
Where are we ?




Kreuter et al., Lancet Res Med, 2017; Van Manen et al., Ther Adv Respir Dis 2017 modified after Raghu, ERJ 2017;

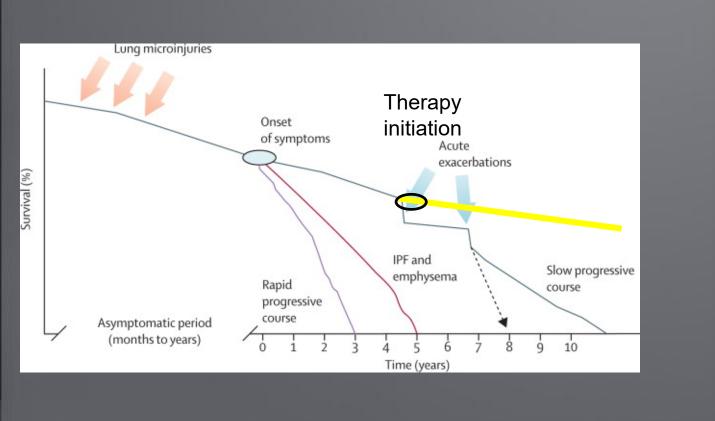
Antifibrotic therapy effects in clinical trials

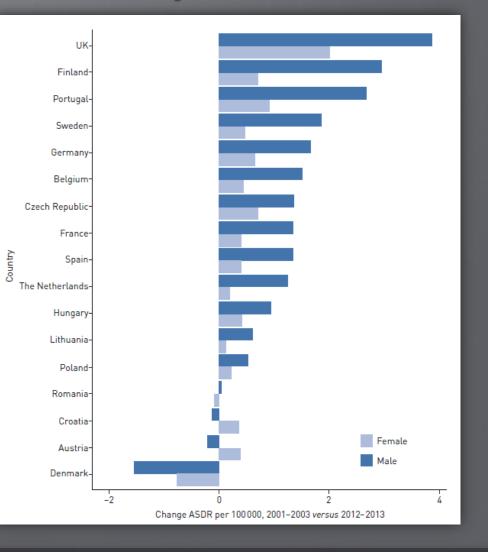
Changes in FVC over time


Nintedanib - TOMORROW & INPULSIS

Pirfenidone - CAPACITY & ASCEND

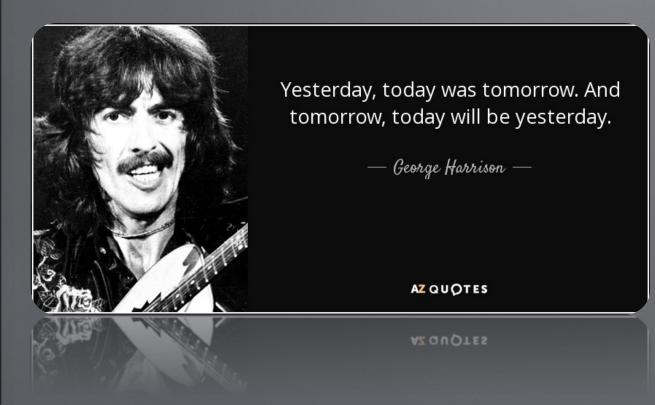
Richeldi L, et al. *Resp Med* 113, 2016; Noble et al., Eur Respir J 2016; 47: 27–30


The natural course of IPF

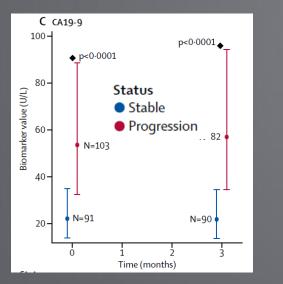


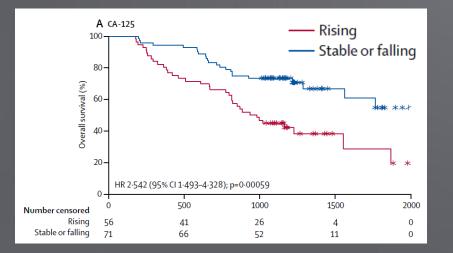
Adapted from King et al, Lancet, 2011

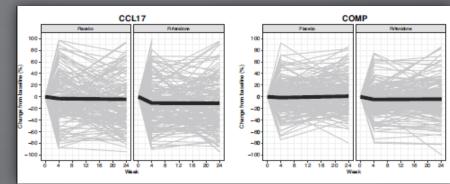
The continued threat to our patients – IPF, a deadly disease

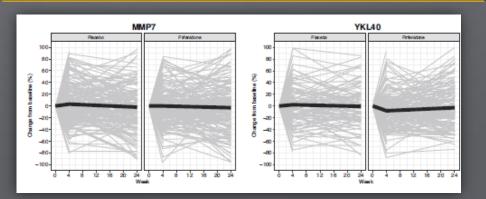

Mortality trends in ILD / IPF – WHO mortality database

Adapted from King et al, Lancet, 2011; Marshall et al., Eur Resp J, 2018


We should have started future yesterday




- > Therapeutic biomarkers guiding therapy
- Combination therapy
- New drugs
- Gene based therapies / stem cell therapy
- > Targeting the lung microbiom
- > New non-drug therapies
- Treatment of comorbidities
- > New developments in LTX
- > New ways to approach palliative care
- Urgent need to improve care of AE-IPF


Predictive therapeutic biomarkers in IPF

"Pirfenidone treatment benefit was consistent regardless of baseline biomarker levels, and pirfenidone treatment had little to no pharmaco-dynamic effect on the plasma levels of the pre-specified biomarkers."

...the best way to predict treatment response to antifibrotic therapy has yet to be found...

Is this the future ?

Combination therapy: the future of management for idiopathic pulmonary fibrosis?

Wim A Wuyts, Katerina M Antoniou, Keren Borensztajn, Ulrich Costabel, Vincent Cottin, Bruno Crestani, Jan C Grutters, Toby M Maher, Venerino Poletti, Luca Richeldi, Carlo Vancheri, Athol U Wells

Venerino Poletti, Luca Richeldi, Carlo Vancheri, Athol U Wells

Wuyts et al. Lancet Respir Med 2014;2(11):933-942

Which direction to go – combination therapy ?

Combination therapy: clinical trials

Table 4. Adverse Events				
	Nintedanib 150 mg Twice Daily with Add-on Pirfenidone ($n = 53$)	Nintedanib 150 mg Twice Daily (<i>n</i> = 51)		
Any adverse events Most frequent adverse events*	47 (88.7)	45 (88.2)		
Diarrhea Nausea Vomiting Fatigue Upper abdominal pain Decreased appetite	20 (37.7) 22 (41.5) 15 (28.3) 10 (18.9) 7 (13.2) 6 (11.3)	16 (31.4) 6 (11.8) 6 (11.8) 6 (11.8) 4 (7.8) 5 (9.8)		
Dyspnea Headache Any serious adverse events [†]	2 (3.8) 7 (13.2) 2 (3.8)	8 (15.7) 1 (2.0) 5 (9.8)		
Any fatal adverse events	0	0		

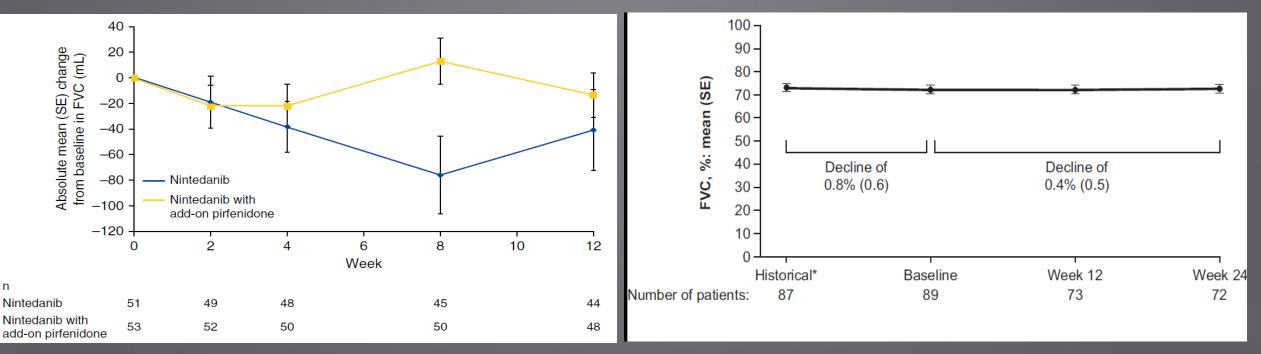
Table 2. Summary of common TEAEs and TEAEs leading to discontinuation (safety

population)

	Patients with at least one TEAE*	Patients with at least one TEAE related to pirfenidone only [†]	Patients with at least one TEAE related to nintedanib only [†]	Patients with at least one TEAE related to both pirfenidone and nintedanib [†]
N=89	n (%)	n (%)	n (%)	n (%)
TEAEs occurring in \geq	5% of patients			
≥ 1 TEAE	88 (99)	_	_	_
≥1 treatment-related TEAE	74 (83)	15 (17)	67 (75)	26 (29)

INJOURNEY trial: combination pirfenidone on top of nintedanib

Nintedanib added to prexisiting Pirfenidone


Conclusion: combination therapy feasibel

Vancheri et al. Am J Respir Crit Care Med 2018;197(3):356-363, Flaherty et al., Eur Resp J 2018

Which direction to go – combination therapy ?

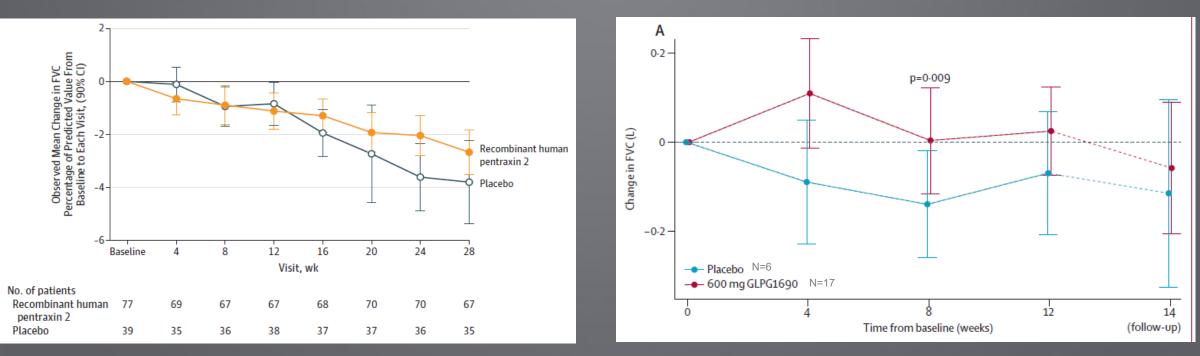
Exploratory efficacy outcomes

INJOURNEY trial: combination pirfenidone on top of nintedanib

n

Nintedanib added to prexisiting Pirfenidone

Conclusion: efficacy of combination to be assessed


Vancheri et al. Am J Respir Crit Care Med 2018;197(3):356-363, Flaherty et al., Eur Resp J 2018

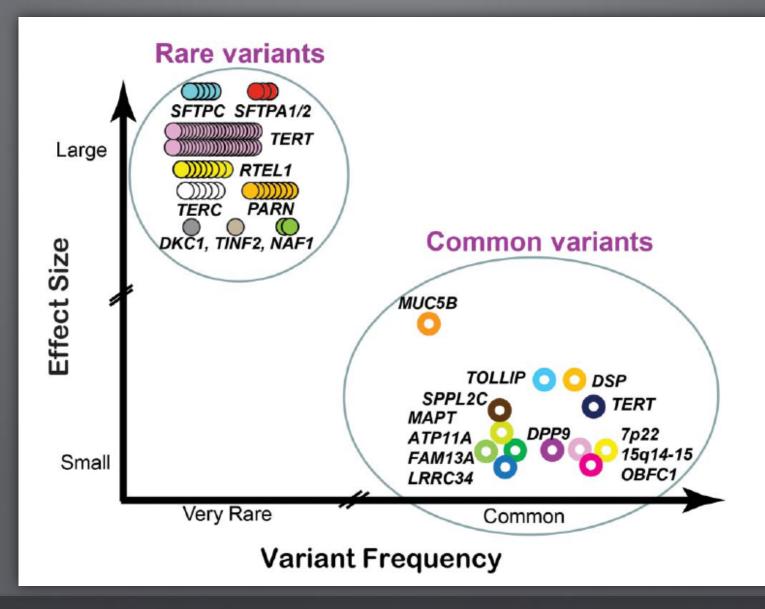
Which direction to go – new drugs ?

Recombinant human pentraxin 2

GLPG1690 autotaxin inhibitor

Purified serum amyloid P = pentraxin2 inhibits monocyte differentiation into profibrotic fibrocytes & into proinflammatory macrophages & production of TGF-β1 Key enzyme for LAPOverexpressed in IPF

Raghu et al. JAMA 2018; Maher et al. Lancet Respir Med 2018


Potential "new" drugs in Phase II-III studies

Study drug	Mechanism of action	Clinical trial identifier (NCT)	Study description	Primary Outcome Measures	Phase of development	Treatment duration
PRM-151	Recombinant form of human SAP	NCT02550873	Randomized, double-blind, placebo controlled	Change From Baseline in Forced Vital Capacity (FVC) [% Predicted]	Ш	28 weeks
Simtuzumab	Anti-Lysyl oxidase (LOX) antibody	NCT01769196	Randomized, Double-Blind, Placebo-Controlled	The effect of simtuzumab (GS-6624) on progression- free survival (PFS)	Ш	148 weeks
Tipelukast	Leukotriene antagonists	NCT02503657	Randomized, double-blind, placebo controlled	Change from baseline of Forced Vital Capacity (FVC) at 26 weeks	Ш	26 weeks
Tralokinumab	Anti IL-13 antibody	NCT01629667	Randomized Dose-ranging	Change From Baseline in Percent-predicted Forced Vital Capacity (FVC) at Week 52	Ш	52 weeks
SAR156597	Anti IL-4 and IL-13 antibody	NCT01529853	Randomized, Double-blind, Placebo-controlled	Safety/tolerability: Number of participants with Adverse events	Ш	6 weeks
Lebrikizumab	Anti IL-13 antibody	NCT01872689	Randomized, Double-Blind, Placebo-Controlled	Annualized Rate of Decrease in Percent Predicted Forced Vital Capacity (FVC) Over 52 Weeks	Ш	52 weeks
BG00011	Anti-Integrin antibody	NCT03573505	Randomized, Double-Blind, Placebo-Controlled	Yearly Rate of Change in Forced (Expiratory) Vital Capacity (FVC)	Ш	52 weeks
Pamrevlumab (FG-3019)	Anti-connective tissue growth factor antibody	NCT01890265	Randomized, Double-Blind, Placebo-Controlled	Change from baseline in FVC (percent of predicted value) at Week 48	П	48 weeks
PBI-4050	Anti-connective tissue growth factor antibody	NCT02538536	Open-label, Single Arm, Exploratory, Observational Study	Number of subjects with abnormal laboratory values and/or adverse events that are related to treatment	II	20 weeks
KD025	Selective inhibitor of ROCK2	NCT02688647	Randomized, Phase 2, Open- Label	Change in Forced Vital Capacity (FVC) in baseline to 24 weeks	Ш	24 weeks
CC-90001	Kinase inhibitor targeting JNKs	NCT03142191	Randomized, Double-blind, Placebo-controlled	Percentage point change in % predicted Forced vital capacity (FVC)	Ш	24 weeks
GLPG1690	Autotaxin-LPA inhibitor	NCT02738801	Randomized, Double-Blind, Parallel Group, Placebo- Controlled	Safety, Tolerability, Pharmacokinetic and Pharmacodynamic Properties of GLPG1690	Ш	12 weeks
Omipalisib / GSK2126458	Inhibitor of PI3K pathway	NCT01725139	Randomized, Double-blind, Placebo-controlled,	To explore a number of doses of GSK2126458 for engagement of pharmacology after short term dosing	I	7 to 10 days
Sirolimus	mTOR inhibitor	NCT01462006	Double-blind Placebo- controlled Pilot Study	Change in peripheral blood concentration of CXCR4+ fibrocytes; number of subjects with drug side-effects	NA	22 weeks
Rituximab	Antibody targeting CD20	NCT01969409	Randomized, Double-blind, Placebo-controlled,	Titers of anti-HEp-2 autoantibodies, by indirect immunofluorescence assays (IFA) over 9 months	Ш	36 weeks
Co-trimoxazole or Doxycycline	Antimicrobial drugs	NCT02759120	Randomized, un-blinded, phase III	Time to first non-elective, respiratory hospitalization or all-cause mortality	 ()	9 months

FIRIT

Somogyi et al., under review

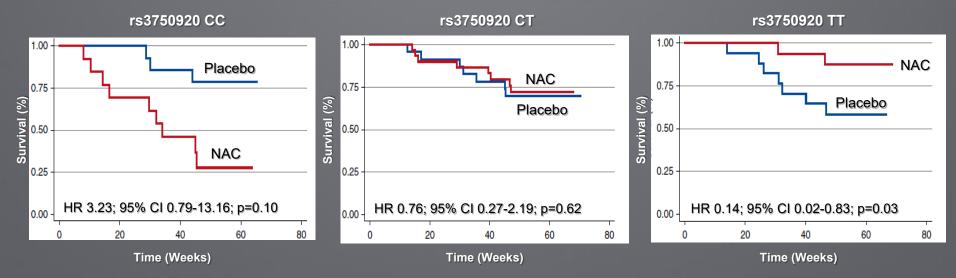
Genetic variants in IPF



Mathai SK, et al. Thorax 2016;71:1154–1160

Personalized therapy in IPF ?

Danazol Treatment for Telomere Diseases


Characteristic	All Patients (N=27)		Patients with Mutation Identified			Patients with No Identified Mutation (N=6)
		TERT (N=10)	TERC (N=7)	DKC1 (N=3)	RTEL1 (N=1)	
Median age (range) — yr	41 (17–66)	49 (23–66)	44 (18–59)	42 (30–49)	28	28 (17-40)
Female sex — no.	15	6	5	1	0	3
Bone marrow failure — no.						
MAA	19	7	4	2	1	5
SAA	4	1	2	0	0	1
MDS	2	1	0	1	0	0
Transfusion dependency — no.						
Red cells	11	4	4	2	0	1
Red cells and platelets	2	1	0	0	0	1
Pulmonary fibrosis — no.†						
Overt	10	3	4	2	0	1
Subclinical	15	6	3	1	1	4
Absent	2	1	0	0	0	1
Cirrhosis — no.†						
Overt	6	3	1	1	1	0
Subclinical	3	1	0	1	0	1
Absent	18	6	6	1	0	5
Early graying of hair — no.	6	2	1	2	1	0
Family history of telomeropathy — no.‡	23	9	7	3	1	3

Townsley et al., NEJM 2016

Personalized therapy in IPF ? NAC effectiveness by TOLLIP genotype – a pharmacogenomic role?

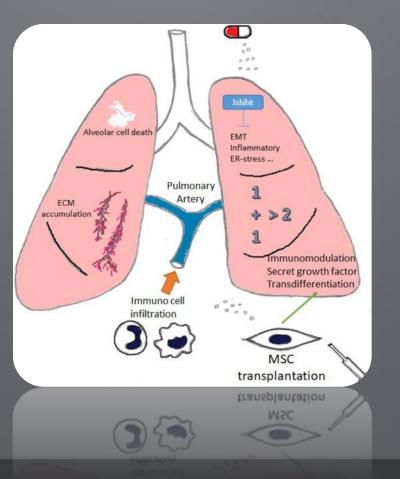
-genetic variants for TOLLIP-

Replicated in patients on NAC from GIPF001 and UChicago

Toll interacting protein:

inhibitory adaptor protein within Toll-like receptors. TLR pathway part of innate immune system that recognizes structurally conserved molecular patterns of microbial pathogens, leading to an inflammatory immune response

Composite endpoint of death, transplantation, hospitalization, or decline in FVC >10% predicted. Oldham JM et al. Am J Respir Crit Care Med 2015;192:1475–1482.

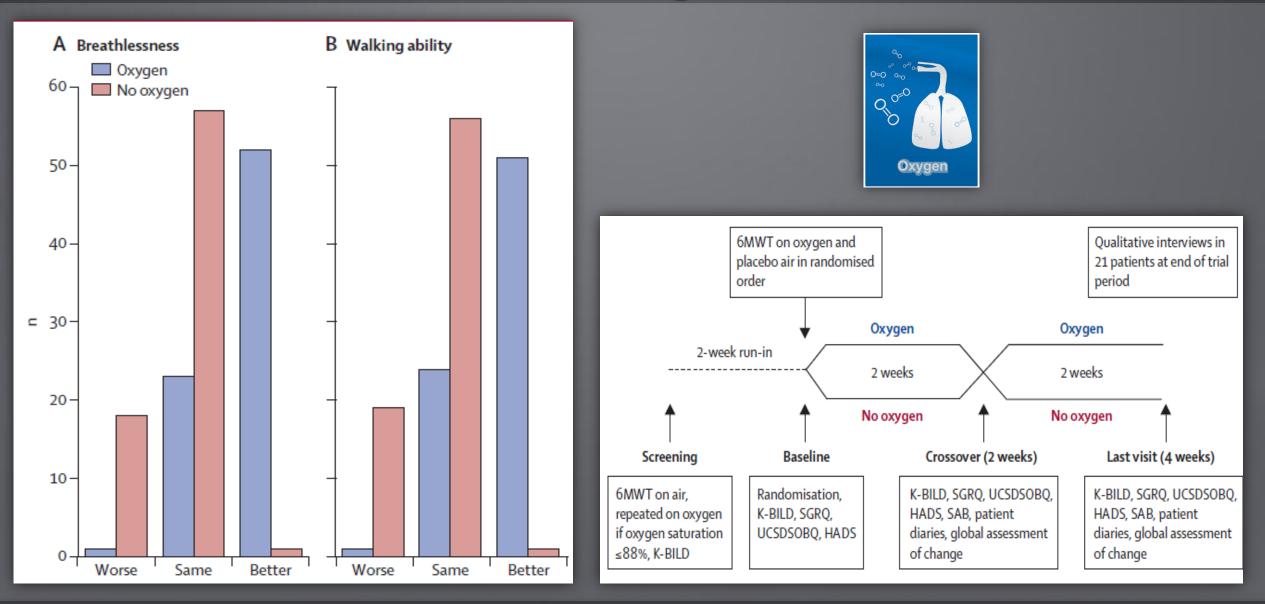

Mesenchymal stem cell transplantation in IPF

Hypothesis:

- MSC differentiate into alveolar epithelial cells
- Effects on tissue repair & wound healing combined with immuno-modulatory properties

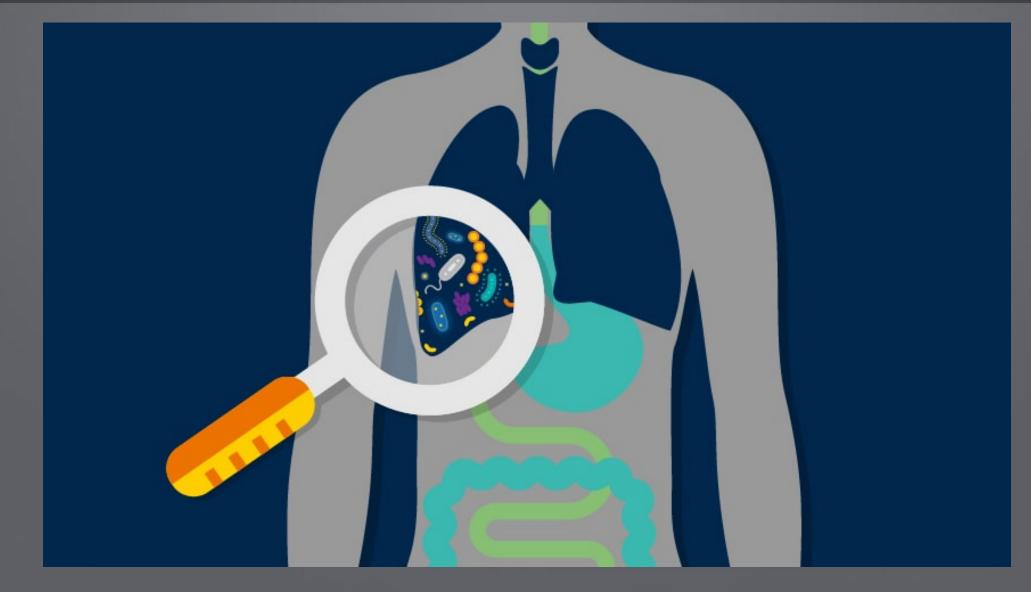
Forms of MSC-TX:

- allogeneic bone marrow MSC transplantation
- human umbilical cord-derived mesenchymal stem cell transplantation
- > adipose-derived stem cell treatment

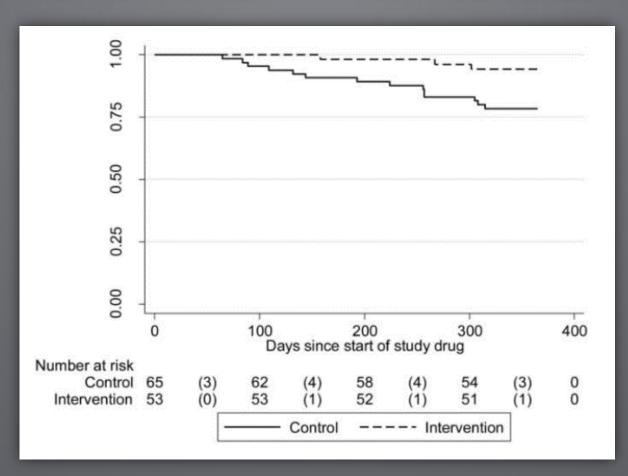


Current status

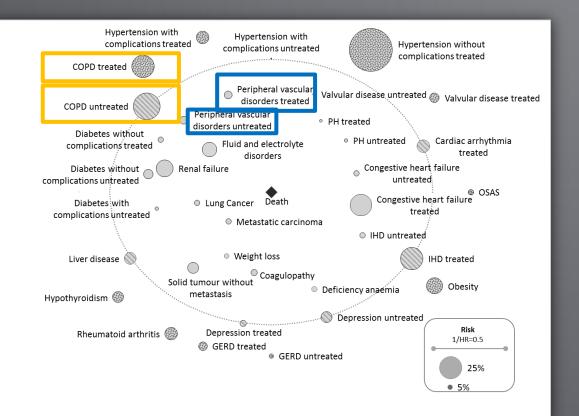
Early phase trials
Safety (+)
Efficacy ???



"New" non-drug treatments

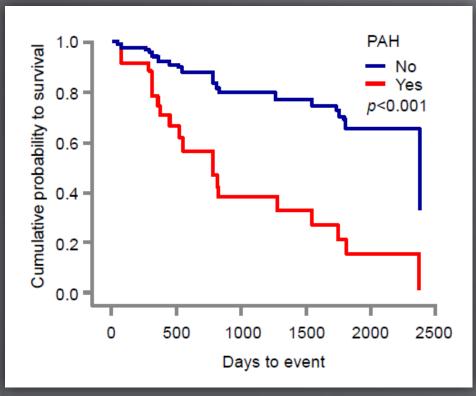

Microbiome & IPF

Molyneaux et al. Am J Respir Crit Care Med 2014 Molyneaux et al. Respiratory Research (2017) 18:29

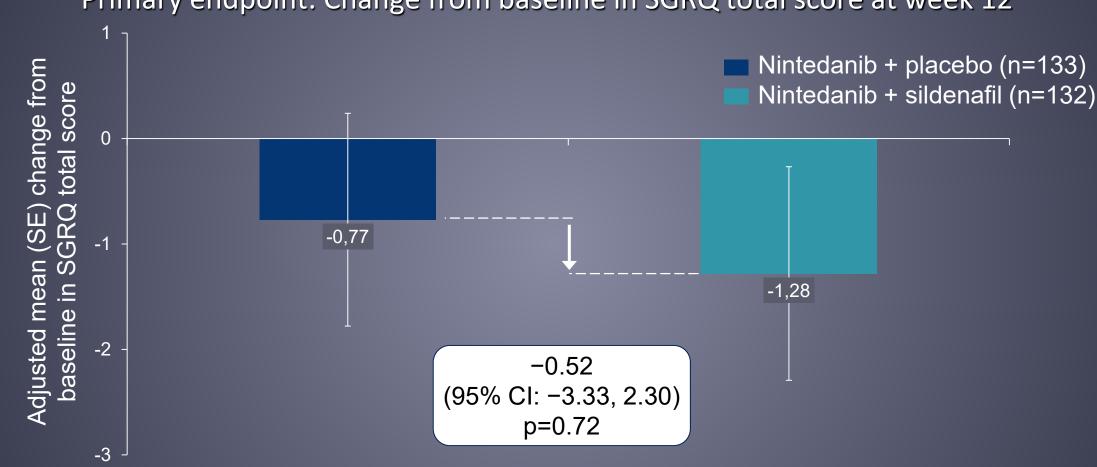

Targeting "bugs" in IPF ?

Co-trimoxazole decreased mortality in per-protocol analysis of 181 patients with fibrotic IIP (89% IPF)

Optimized treatments of comorbidities

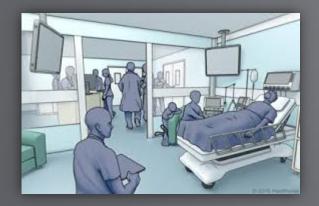

Mean change in forced vital capacity (L) from randomization to week 48 Weeks from Randomization 48 12 24 36 0.00 -0,05 -0.05 Change in FVC (L) -0,10 P Value= 0.28 -0.13 -0,15 Surgery Arm No Surgery Arm -0,20

Endpoint	Surgery N=29	No surgery N=29	P-value
Clinical events *			
Acute exacerbation	1 (3.4%)	4 (16.3%)	0.19
Respiratory hospitalization	2 (6.9%)	6 (20.7%)	0.25
Non-elective hospitalization	5 (17.2%)	8 (27.6%)	0.35
Lung transplantation	0 (0.0%)	1 (3.4%)	>0.99
Disease progression [†]			
Death	1 (3.4%)	4 (17.7%)	0.13
10% FVC decline or death	2 (9.1%)	7 (29.4%)	0.038
10% FVC decline, acute exacerbation, or death	2 (9.1%)	7 (27.8%)	0.048


The unmet need in IPF: treatment of PH-IPF

	Drug tested	Primary outcome	Result	
Trials targeting IPF with drugs approved in PAH				
STEP-IPF [22]	Sildenafil	Proportion of patients with >20% increase in 6-min walk distance	Negative on primary outcome, some positive effect on secondary and exploratory end-points	
ARTEMIS-IPF [23]	Ambrisentan	Time to disease progression, defined as death, respiratory hospitalisation, or a categorical decrease in lung function	Deleterious effect	
BUILD-1 [24]	Bosentan	6-min walk distance	Negative	
BUILD-3 [25]	Bosentan	Time to IPF worsening (a confirmed decrease from baseline in FVC ≥10% and DLco ≥15%, or acute exacerbation of IPF) or death	Negative	
MUSIC [26] Trials targeting IPF-PH with drugs approved in PAH	Macitentan	FVC	Negative	
ARTEMIS-PH (NCT00879229)	Ambrisentan	6-min walk distance	Terminated early	
RISE-IIP [27] (results unpublished)	Riociguat	6-min walk distance	Terminated early	
BPHIT [28]	Bosentan	Indexed pulmonary vascular resistance	Negative	
FVC: forced vital capacity; <i>D</i> LCO: diffusing capacity of the lung for carbon monoxide.				

Nintedanib plus sildenafil in IPF: the INSTAGE trial

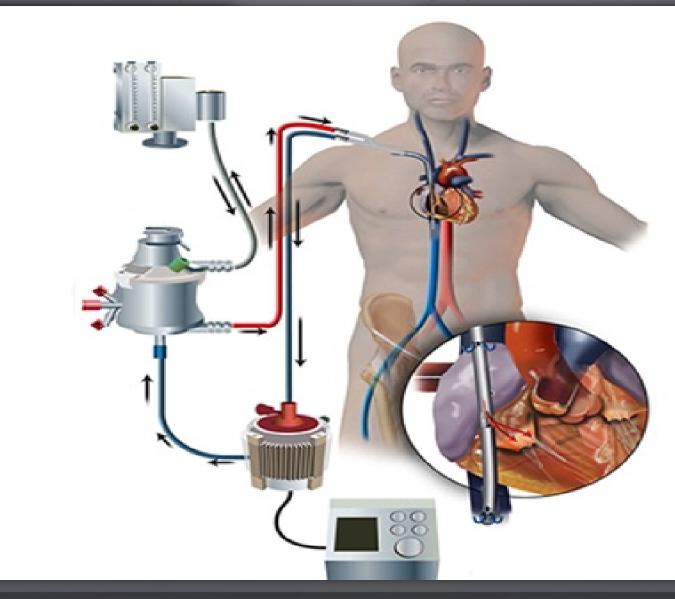

Primary endpoint: Change from baseline in SGRQ total score at week 12

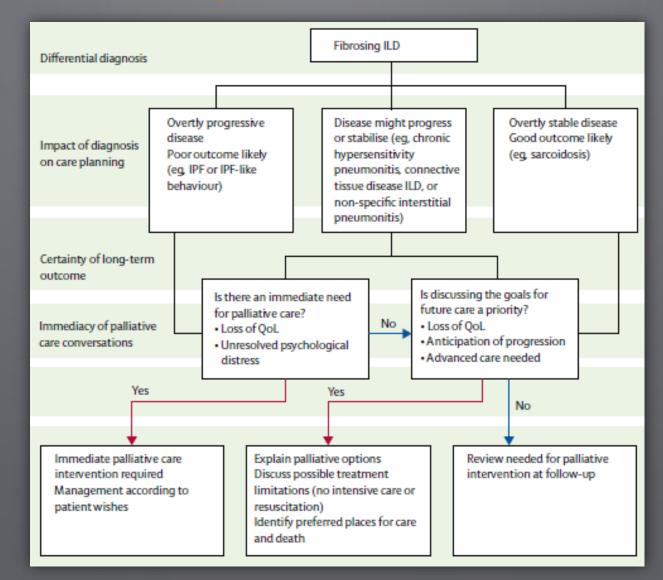
Conclusions

- No significant benefits on primary endpoint QoL/SOB
- Decline for this advanced patient group similar to less advanced INPULSIS

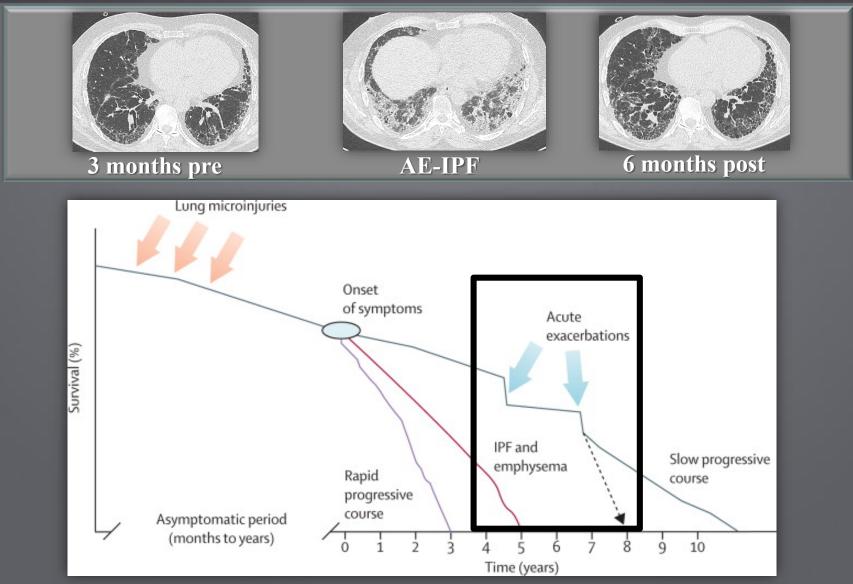
Kolb M et al, NEJM 2018

The two sides of severe IPF progression




Brigde to LTX (?) : ECMO

Trudzinski et al., Am J Respir Crit Care Med Vol 193, Iss 5, pp 527–533, Mar 1, 2016


The other end – palliative care for AE-IPF

Kreuter et al., Lancet Res Med, 2017

The continued threat in IPF

The continued threat in IPF – AE-IPF


		International survey, n=509;
Practical questions	Answers	From 66 countries, 6 continents
Do you use BAL for diagnosing AE?	We perform BAL unless there is a high chance of triggering the need for mechanical ventilation	6 %
Do you use empirical antibiotic treatment?	We use broad-spectrum antibiotic therapy	56% always 23% if clinical signs
Do you treat with antivirals?	No, unless the patient is severely lymphopenic	0%
Do you treat for pneumocystis?	Yes, we do	0%
Do you use anticoagulation?	No, we do not	0% (as therapy)
Do you use corticosteroids?	Yes, we pulse the patient with three daily doses of methylprednisolone of 1 g each	96% yes – 4% no (62% methylprednisone 3d 0,5-1 g, 32% 100 mg prednisone)
Do you use cyclophosphamide for AE-IPF?	No	18%
Continuation / initiat	ion of antifibrotics	76% continuation, 7% discontinuation, 9% switch drug

Antoniou & Wells. Respiration 2013;86(4):265-274; Kreuter et al. presented at ERS 2018 Significant heterogenity between continents

Conclusions

- Established treatments
 - non-
 - pharmacological
 - pharmacological
- No disease stabilization

- > Therapeutic biomarkers guiding therapy
- Combination therapy
- New drugs
- Gene based therapies / stem cell therapy
- > Targeting the lung microbiom
- New non-drug therapies
- Treatment of comorbidities
- > New developments in LTX
- > New ways to approach palliative care
- Urgent need to improve care of AE-IPF

Thank you!

