

Molecular pathology and lung cancer

Giuseppe Pelosi

Milano, 14 - 16 giugno 2018 · Centro Congressi Palazzo delle Stelline

PNEUMOLOGIA 2018

University of Milan & IRCCS Multimedica, Milan

MINICORSO Giovedi, 14 giugno 2018

TUMORE POLMONARE E DINTORNI

Coordinatori: Vittorio Bedini (Milano), Ornella Gottardi (Milano) Moderatori: Vittorio Bedini (Milano), Ornella Gottardi (Milano)

- 14.00 14.20 La prevenzione: il fumo Silvano Gallus (Milano) 14.20 - 14.40 Biologia molecolare e tumori polmonari Giuseppe Pelosi (Milano) 14.40 - 15.00 Le nuove terapie del tumore polmonare Marina Garassino (Milano) 15.00 - 15.20 Discussione 15.20 - 15.40 La chirurgia dell'esofago Vittorio Bedini (Milano) 15.40 - 16.00 La chirurgia del timo Federico Rea (Padova) La chirurgia polmonare negli stadi localmente avanzati Ugo Pastorino (Milano) 16.00 - 16.20 16.20 - 16.40 Le tecniche mini-invasive nel cancro del polmone Lorenzo Spaggiari (Milano)
- 16.40 17.00 Discussione

The issue of molecular pathology

DEBRA G.B. LEONARD EDITOR

ANGELA M. CALIENDO ELAINE LYON HANNA RENNERT IRIS SCHRIJVER ANTONIA R. SEPULVEDA VIVIANNA M. VAN DEERLIN SECTION EDITORS

Molecular Pathology in Clinical Practice

Editors

Molecular

Pathology

in Cancer

Research

Second Edition

Molecular Pathology Library

Philip T. Cagle - Timothy Craig Allen

Mary Beth Beasley - Lucian R. Chiriead

Bryce Portier - Eric H. Bernicker Editors

Pathology of

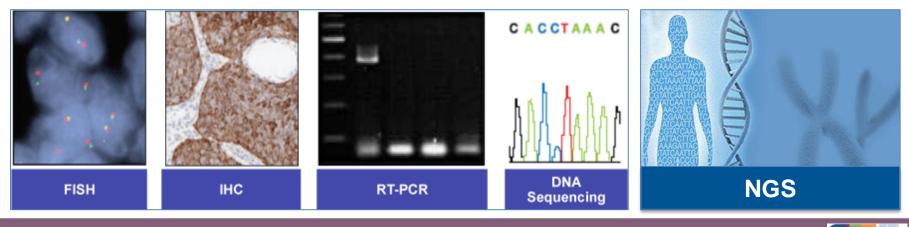
Lung Cancer

Sanja Dacic - Alain C. Borczuk

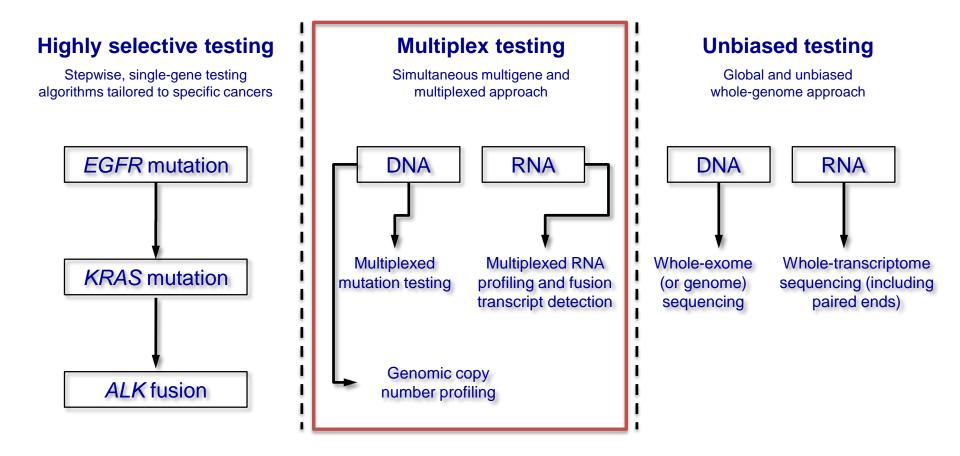
Precision Molecular

Keith M. Kerr - Lynette M. Sholl

eries Editor: Philip T. Cagle



Emerging discipline within Pathology focusing on disease study and diagnosis through molecular investigation of organs, tissues or bodily fluids



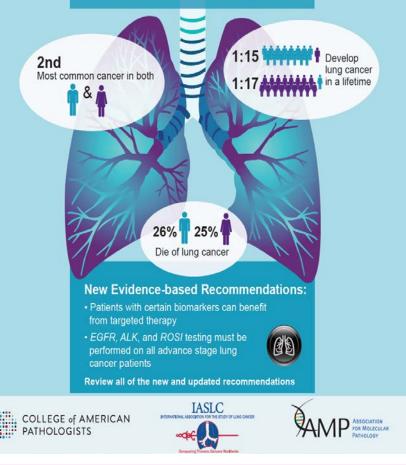
Molecular biomarker testing

- ISH: amplification, gene copy gain, gene deletion, translocation (break-apart ISH), BISH (morphology), mRNA content
- IHC: cellular antigens (nucleus, membrane, cytoplasm)phosphorylated substrates (morphology is maintained)
- **RT-PCR, real-time PCR:** fusion transcripts, mutations, mRNA levels, also in biological fluids and circulating cancer cells
- **DNA/RNA sequencing:** mutations, fusion genes, GEP
- Epigenetics: hypermethylation, acethylation

Molecular diagnostics

Taylor BS & Ladanyi M – J Pathol 2011

Future


Present

Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors

This update of the 2013 guideline will help ensure:

Uniform approach to molecular testing

Improved effectiveness of treatment for patients

Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors

Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology

Neal I. Lindeman, MD,^{a,*} Philip T. Cagle, MD,^c Dara L. Aisner, MD, PhD,^d Maria E. Arcila, MD,^e Mary Beth Beasley, MD,^g Eric Bernicker, MD,^h Carol Colasacco, MLIS, SCT(ASCP),ⁱ Sanja Dacic, MD, PhD,^j Fred R. Hirsch, MD, PhD,^k Keith Kerr, MB, ChB,^l David J. Kwiatkowski, MD, PhD,^b Marc Ladanyi, MD,^f Jan A. Nowak, MD, PhD,^m Lynette Sholl, MD,^a Robyn Temple-Smolkin, PhD,ⁿ Benjamin Solomon, MBBS, PhD,^o Lesley H. Souter, PhD,^p Erik Thunnissen, MD, PhD,^q Ming S. Tsao, MD,^r Christina B. Ventura, MPH, MT(ASCP),ⁱ Murry W. Wynes, PhD,^s Yasushi Yatabe, MD, PhD^t

Subtyping

- Oncogene addiction
 - EGFR, ALK, ROS1 🖝 stand-alone gene;
 - HER2, MET, BRAF, KRAS, RET INGS panel
- Immunohistochemistry for ALK/ROS1
- 5% sensitivity assay for EGFR T790M
- cfDNA for targetable mutations
 - when the tissue is an issue
 - Immunotherapy markers (PD-L1)

University of Milan

Subtyping

biopsy, cytology

biopsy, cytology

Clinics (age, PS,

comorbidities)

PD-L1 expression (TPS)

- Oncogene addiction (EGFR, ALK, ROS1)
- **Clinics** (age, PS, comorbidities)

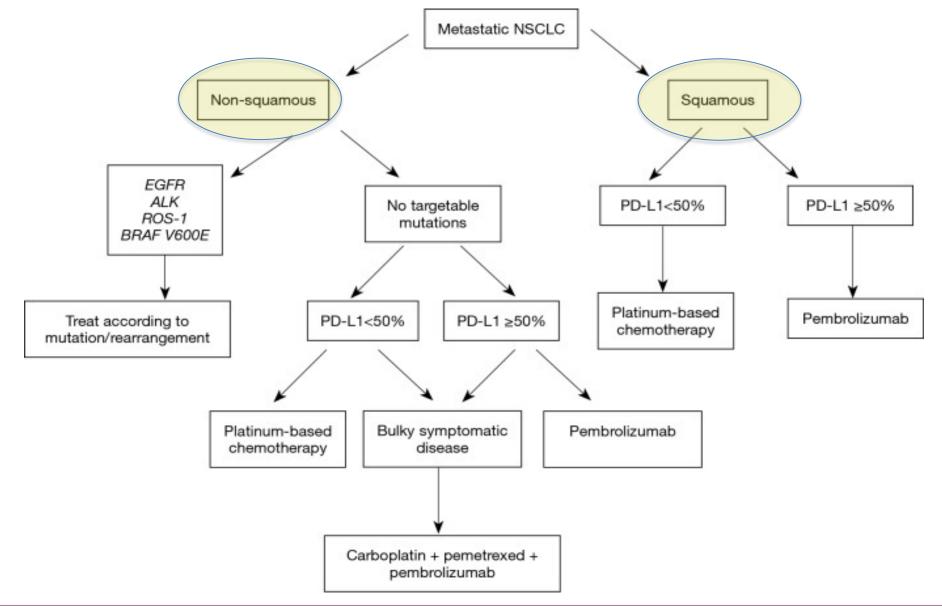
Subtyping

Linee guida

NEOPLASIE DEL POLMONE

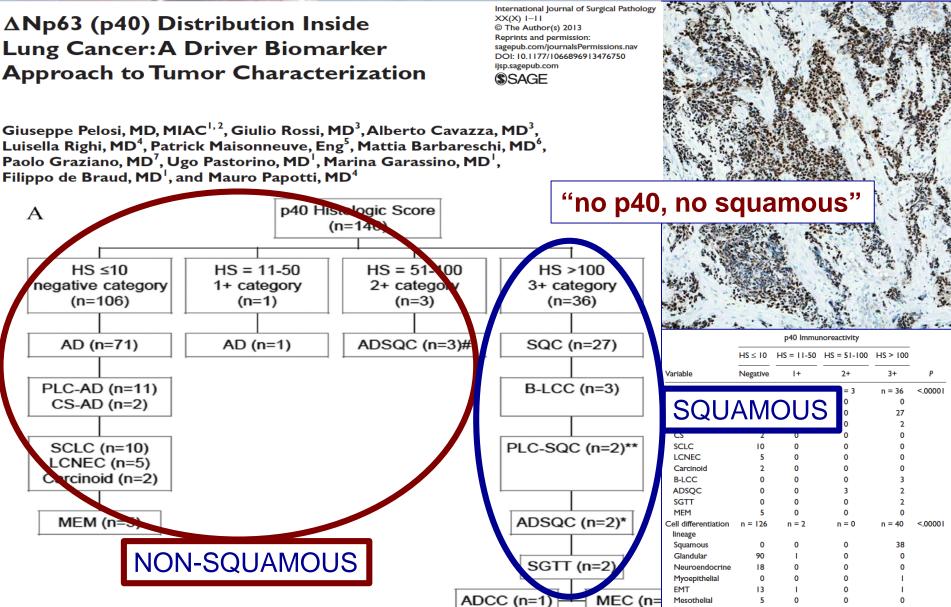
Edizione 2017

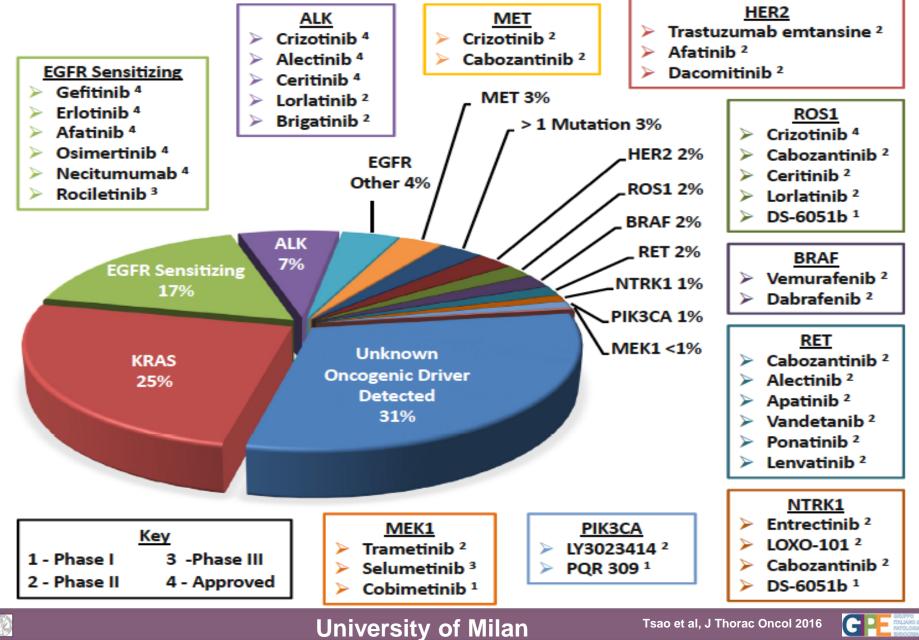
Aggiornamento 27 ottobre 2017



Associazione Italiana di Oncologia Medica

No oncogene


addiction



Minimalist subtyping to strategize

Assessing molecular landscape

Multiplex testing

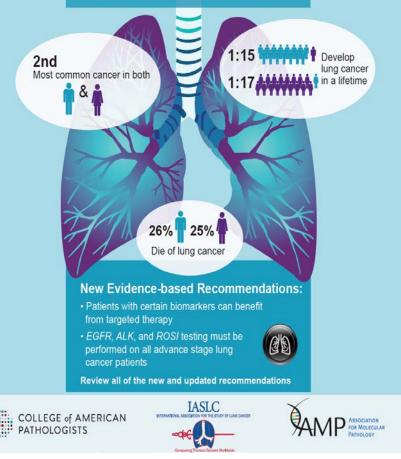
Current Gene List⁺

Entire coding sequence (base substitutions, indels, copy number alterations).

FOUNDATIONONE®

FOUNDATION MEDICINE®

ABL1	ABL2	ACVR1B	AKT1	AKT2	AKT3	ALK	AMER1 (FAM123B)	APC
AR	ARAF	ARFRP1	ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR
ATRX	AURKA	AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1
BCL2L2	BCL6	BCOR	BCORL1	BLM	BRAF	BRCA1	BRCA2	BRD4
BRIP1	BTG1	BTK	C11orf30 (EMSY)	CARD11	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD274 (PD-L1)	CD79A	CD79B	CDC73	CDH1	CDK12	CDK4
CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD2
CHD4	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF
CTNNA1	CTNNB1	CUL3	CYLD	DAXX	DDR2	DICER1	DNMT3A	DOTIL
EGFR	EP300	EPHA3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4
ERG	ERRFI1	ESR1	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FGF10	FGF14	FGF19
FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH
FLCN	FLT1	FLT3	FLT4	FOXL2	FOXP1	FRS2	FUBP1	GABRA6
GATA1	GATA2	GATA3	GATA4	GATA6	GID4 (C17orf39)	GL/1	GNA11	GNA13
GNAQ	GNAS	GPR124	GRIN2A	GRM3	GSK3B	H3F3A	HGF	HNF1A
HRAS	HSD3B1	HSP90AA1	IDH1	IDH2	IGF1R	IGF2	IKBKE	IKZF1
IL7R	INHBA	INPP4B	IRF2	IRF4	IRS2	JAKI	JAK2	JAK3
JUN	KAT6A (MYST3)	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT
KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)	KRAS	LMO1	LRP1B	LYN	LZTR1
MAGI2	MAP2K1 (MEKI)	MAP2K2 (MEK2)	MAP2K4	MAP3K1	MCL1	MDM2	MDM4	MED12
MEF2B	MEN1	MET	MITE	MLH1	MPL	MRE11A	MSH2	MSH6
MTOR	MUTYH	MYC	MYCL (MYCLI)	MYCN	MYD88	NF1	NF2	NFE2L2
NFKBIA	NKX2-1	NOTCH1	NOTCH2	NOTCH3	NPM1	NRAS	NSD1	NTRK1
NTRK2	NTRK3	NUP93	PAK3	PALB2	PARK2	PAX5	PBRM1	PDCD1LG2 (PD-L2)
PDGFRA	PDGFRB	PDK1	PIK3C2B	PIK3CA	PIK3CB	PIK3CG	PIK3R1	PIK3R2
PLCG2	PMS2	POLD1	POLE	PPP2R1A	PRDM1	PREX2	PRKAR1A	PRKCI
PRKDC	PRSS8	PTCH1	PTEN	PTPN11	QKI	RAC1	RAD50	RAD51
RAF1	RANBP2	RARA	RB1	RBM10	RET	RICTOR	RNF43	ROS1
RPTOR	RUNX1	RUNX1T1	SDHA	SDHB	SDHC	SDHD	SETD2	SF3B1
SLIT2	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1
SOX10	SOX2	SOX9	SPEN	SPOP	SPTA1	SRC	STAG2	STAT3
STAT4	STK11	SUFU	SYK	TAF1	TBX3	TERC	TERT (Promoter only	DTET2
TGFBR2	TNFAIP3	TNFRSF14	TOP1	TOP2A	TP53	TSC1	TSC2	TSHR
U2AF1	VEGFA	VHL	WISP3	WT1	XPO1	ZBTB2	ZNF217	ZNF703
Select Re	arrangement	:s [‡]					Tumor mu	tation burden
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	BRD4	EGFR	ETV1
ETV4	ETV5	ETV6	FGFR1	FGFR2	FGFR3	KIT	MSH2	MYB
MYC	NOTCH2	NTRKI	NTRK2	PDGFRA	RAF1	RARA	RET	ROS1
TMPRSS2								



Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors

This update of the 2013 guideline will help ensure:

Uniform approach to molecular testing

Improved effectiveness of treatment for patients

Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors

Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology

Neal I. Lindeman, MD,^{a,*} Philip T. Cagle, MD,^c Dara L. Aisner, MD, PhD,^d Maria E. Arcila, MD,^e Mary Beth Beasley, MD,^g Eric Bernicker, MD,^h Carol Colasacco, MLIS, SCT(ASCP),ⁱ Sanja Dacic, MD, PhD,^j Fred R. Hirsch, MD, PhD,^k Keith Kerr, MB, ChB,^l David J. Kwiatkowski, MD, PhD,^b Marc Ladanyi, MD,^f Jan A. Nowak, MD, PhD,^m Lynette Sholl, MD,^a Robyn Temple-Smolkin, PhD,ⁿ Benjamin Solomon, MBBS, PhD,^o Lesley H. Souter, PhD,^p Erik Thunnissen, MD, PhD,^q Ming S. Tsao, MD,^r Christina B. Ventura, MPH, MT(ASCP),ⁱ Murry W. Wynes, PhD,^s Yasushi Yatabe, MD, PhD^t

 "Testing should extend beyond those molecular alterations for which targeted therapies are approved by regulatory agencies...to include molecular alterations for which there is compelling evidence of effective investigational targeted therapies (and immunotherapies) from published clinical trials"

Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors

Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology

Neal I. Lindeman, MD,^{a,*} Philip T. Cagle, MD,^c Dara L. Aisner, MD, PhD,^d Maria E. Arcila, MD,^e Mary Beth Beasley, MD,^g Eric Bernicker, MD,^h Carol Colasacco, MLIS, SCT(ASCP),ⁱ Sanja Dacic, MD, PhD,^j Fred R. Hirsch, MD, PhD,^k Keith Kerr, MB, ChB,^l David J. Kwiatkowski, MD, PhD,^b Marc Ladanyi, MD,^f Jan A. Nowak, MD, PhD,^m Lynette Sholl, MD,^a Robyn Temple-Smolkin, PhD,ⁿ Benjamin Solomon, MBBS, PhD,^o Lesley H. Souter, PhD,^p Erik Thunnissen, MD, PhD,^q Ming S. Tsao, MD,^r Christina B. Ventura, MPH, MT(ASCP),ⁱ Murry W. Wynes, PhD,^s Yasushi Yatabe, MD, PhD^t

"Must-test" biomarkers as singlegene assay: standard of care for all patients

"Should-test" biomarkers: to direct patients to clinical trials (in larger gene panel)

"Investigational" biomarkers: not yet applicable to clinical use

laboratories "Should-test" biomarkers: expanded NGS panels (BRAF, MET, RET, HER2, KRAS)

EGFR, ALK, ROS1, PD-L1 in all

"Must-test" biomarkers:

"Investigational" biomarkers: all the other genes

"Should-test" biomarkers

Table 4. Summary of 2017 Guideline Statements

Guideline Statements	Strength of Recommendation
Key Question 1: Which new genes should be tested for lung cancer patients?	
 ROS1 testing must be performed on all lung adenocarcinoma patients, irrespective of clinical characteristics. 	Strong recommendation
 ROS1 IHC may be used as a screening test in lung adenocarcinoma patients; however, positive ROS1 IHC results should be confirmed by a molecular or cytogenetic method. 	Expert consensus opinion
3. BRAF molecular testing is currently not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include BRAF as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative.	Expert consensus opinion
4. RET molecular testing is not recommended as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include RET as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative.	Expert consensus opinion
5. <i>ERBB2</i> (<i>HER2</i>) molecular testing is not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include <i>ERBB2</i> (<i>HER2</i>) mutation analysis as part of a larger testing panel performed either initially or when routine <i>EGFR</i> , <i>ALK</i> , and <i>ROS1</i> testing are negative.	Expert consensus opinion
6. KRAS molecular testing s not indicated as a routine stand-alone assay as a sole determinant of targeted therapy. It is appropriate to include KRAS as part of larger testing panels performed either initially or when routine EGFR. ALK. and ROS1 testing are negative.	Expert consensus opinion
7. MET molecular testing is not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include MET as part of larger testing panels performed either initially or when routine EGFR. ALK. and ROS1 testing are negative.	Expert consensus opinion

"Investigational" biomarkers

Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors

This update of the 2013 guideline will help ensure: • Uniform approach to molecular testing

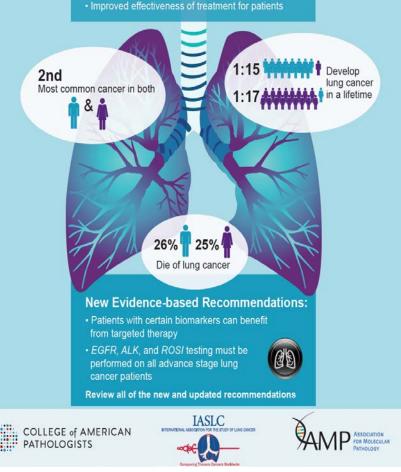
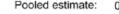


Table 5. Emerging Markers for Molecular Testing in LungCancer

Mitogen-activated protein kinase kinase 1 (MEK1/MAP2K1) Fibroblast growth factor receptor 1-4 (FGFR 1-4) Neurotrophic tyrosine kinase, receptor, type 1-3 (NTRK1-3) Neuregulin 1 (*NRG1*) Ras-like without CAAX 1 (RIT1) Neurofibromin 1 (NF1) Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) AKT serine/threonine kinase 1 (AKT1) NRAS proto-oncogene, GTPase (NRAS) Mechanistic target of rapamycin (MTOR) Tuberous sclerosis 1 (TSC1) Tuberous sclerosis 2 (TSC2) KIT proto-oncogene receptor tyrosine kinase (KIT) Platelet-derived growth factor receptor alpha (PDGFRA) Discoidin domain receptor tyrosine kinase 2 (DDR2)

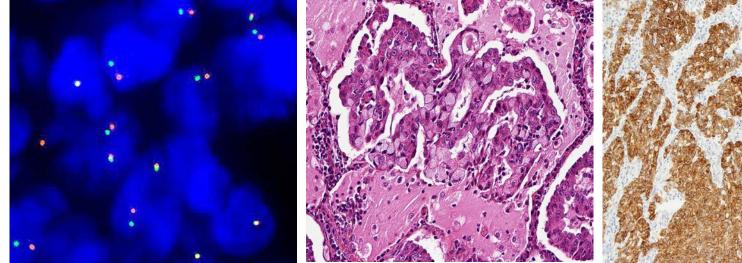


Advanced lung cancer: ALK by IHC

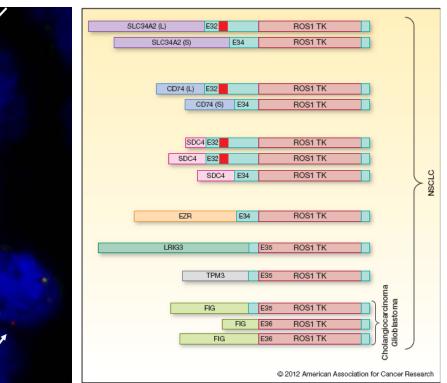
Study	ΤР	FP	FN	ΤN	Antibody	Cut-Off	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Conde 2014 ¹⁴⁵	46	0	1	56	5A4	2-3+	0.98 [0.89, 1.00]	1.00 [0.94, 1.00]	-	-
Conde 2014b 145	46	0	1	56	D5F3	2-3+	0.98 [0.89, 1.00]	1.00 [0.94, 1.00]		-
Cutz 2014 ¹⁴⁶	18	29	0	326	5A4	At least 1+	1.00 [0.81, 1.00]	0.92 [0.88, 0.94]		
Gruber 2015 ¹⁵³	19	0	1	198	D5F3	At least 1+	0.95 [0.75, 1.00]	1.00 [0.98, 1.00]		
Ilie 2015 ⁶¹	21	2	5	149	5A4	At least 1+	0.81 [0.61, 0.93]	0.99 [0.95, 1.00]		
Lantuejoul 2015 ¹⁵⁴	127	108	13	292	5A4/D5F3	At least 1+	0.91 [0.85, 0.95]	0.73 [0.68, 0.77]	-	
McLeer-Florin 2012 ¹³⁹	19	1	2	59	5A4	At least 1+	0.90 [0.70, 0.99]	0.98 [0.91, 1.00]		-
Minca 2013142	32	0	0	217	D5F3	pos or neg	1.00 [0.89, 1.00]	1.00 [0.98, 1.00]		
Park 2012 ¹⁴¹	25	3	0	234	5A4	At least 1+	1.00 [0.86, 1.00]	0.99 [0.96, 1.00]		
Savic 2015 ¹⁵⁵	29	2	3	269	5A4/D5F3	At least 1+	0.91 [0.75, 0.98]	0.99 [0.97, 1.00]		
Shan 2014 ¹⁵¹	36	8	0	242	D5F3	pos or neg	1.00 [0.90, 1.00]	0.97 [0.94, 0.99]		
Sholl 2013 ¹⁴⁰	13	0	1	162	5A4	pos or neg	0.93 [0.66, 1.00]	1.00 [0.98, 1.00]		
Tantraworasin 2014147	8	13	2	244	5A4	pos or neg	0.80 [0.44, 0.97]	0.95 [0.92, 0.97]		
To 2013 ¹⁴³	20	0	0	331	5A4	2-3+	1.00 [0.83, 1.00]	1.00 [0.99, 1.00]		
Wang 2014 ¹⁴⁸	46	7	0	377	D5F3	At least 1+	1.00 [0.92, 1.00]	0.98 [0.96, 0.99]		0 0.2 0.4 0.6 0.8 1

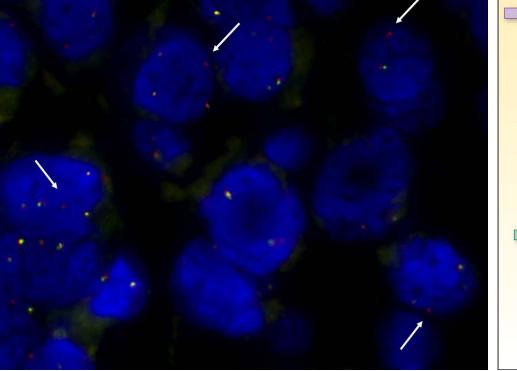
IHC 2+/3+ using mAb 5A4 and/or D5F3

Pooled estimate:



0.9656 (0.9254-0.9845)




Advanced lung cancer: ROS-1 by FISH

Study	ΤР	FP	FN	ΤN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Cha 2014 ⁴²	13	16	0	301	1.00 [0.75, 1.00]	0.95 [0.92, 0.97]		
Mescam-Mancini 201443	9	3	0	95	1.00 [0.66, 1.00]	0.97 [0.91, 0.99]		
Shan 2015 ⁴⁷	10	2	3	45	0.77 [0.46, 0.95]	0.96 [0.85, 0.99]		
Sholl 201344	8	4	0	44	1.00 [0.63, 1.00]	0.92 [0.80, 0.98]		
Yoshida 201445	16	33	1	220	0.94 [0.71, 1.00]	0.87 [0.82, 0.91]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

IHC 2+/3+ using mAb D4D6

Pooled estimate: 0.9587 (0.7075-0.9955)

0.9352 (0.8900-0.9626)

Molecular biology and lung cancer


1. Targeted therapy: new targets

- muts, fusions, CNVs
- driver variations
- actionable variations
- immune checkpoint

2. Tumor heterogeneity

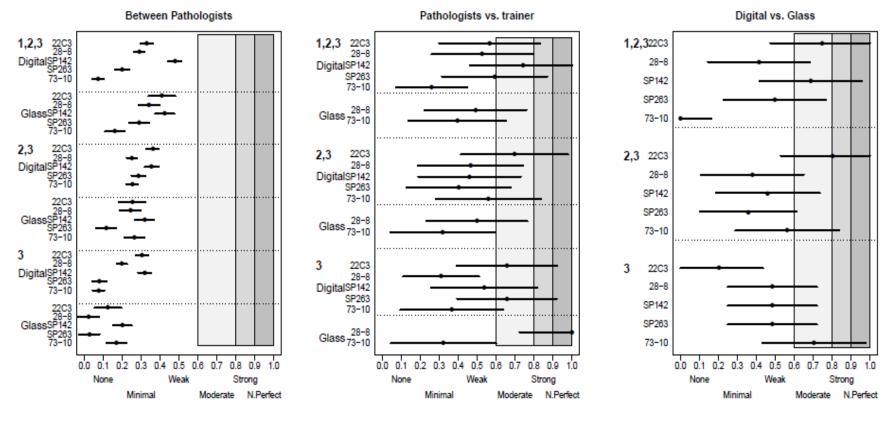
- cancer biology
- drug resistance
- 3. Classification
 - WHO & beyond

Edited by William D. Travis, Elisabeth Brambilla, Alien P. Burke, Alexander Marx, Andrew G. Nicholson

() WHO

PD-L1 assay for immunotherapy

IASLC 18TH WORLD CONFERENCE ON LUNG CANCER


October 15-18, 2017 | Yokohama, Japan

INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER

IASL

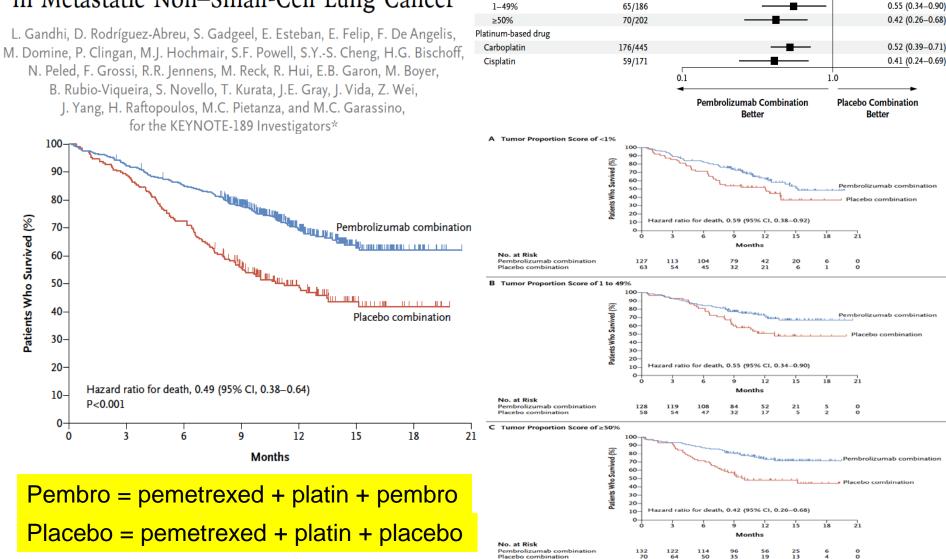
WWW.IASLC.ORG

Poor reliability for immune cell scoring

Fleiss Kappa Statistics

0.60-0.79: Moderate

0.40-0.59: Weak


0.21-0.39: Minimal

Tsao et al, JTO 2018

PD-L1 assessment for IT

Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer

PD-L1 tumor proportion score

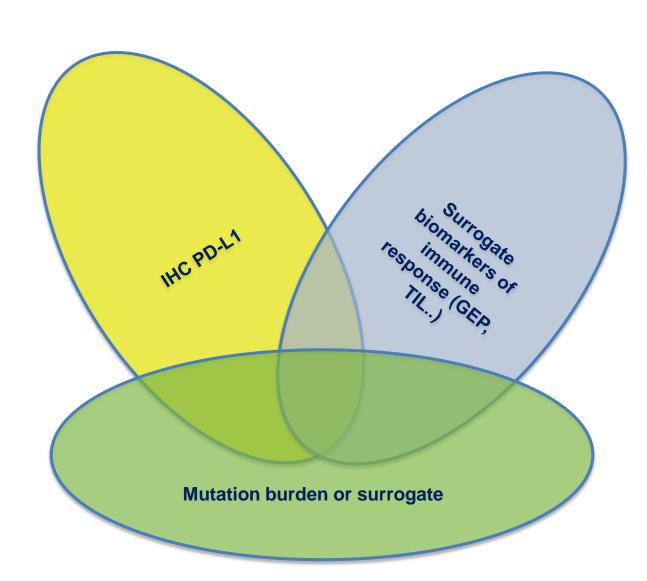
<1%

≥1%

84/190

135/388

University of Milan


0.59 (0.38-0.92)

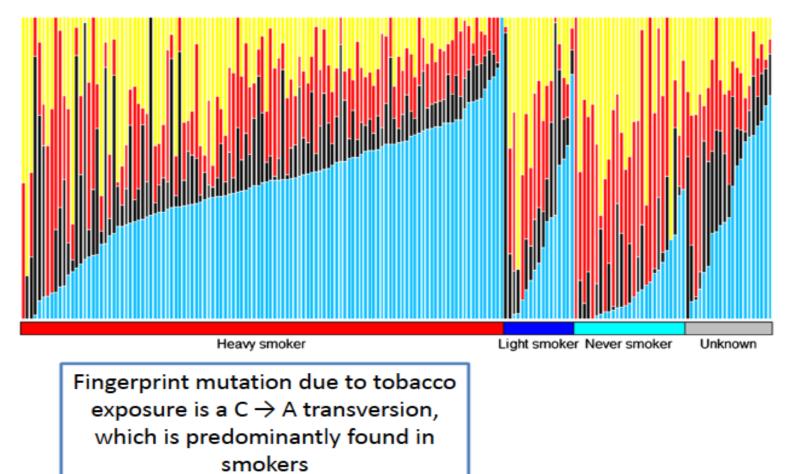
0.47 (0.34-0.66)

Quid ego nunc faciam?

Plauto CASINA BRR elassiei greci e latini,

Interpreting PD-L1 expression

Differential effects depend upon a dose-response relationship


Biomarker is "negative" Oncogene addiction is absent Therapy is unlikely to benefit Biomarker is "positive" Oncogene addiction is present Therapy is more likely to benefit

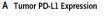
Biomarker is at low levels	Biomarker is at intermediate levels	Biomarker is at high levels
1%, 5%	25%	50% 100%
Biolog	jical continuum of expres	ssion
Lower likelihood of response	? Intermediate likelihood of response	Higher likelihood of response

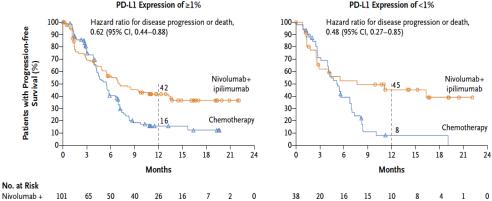
What is positive? Where should we set the cut-offs?

Tumor mutation burden for IT

Mutational smoking signature

Jia et al. BMC Medical Genomics 2014


Tumor mutation burden for IT

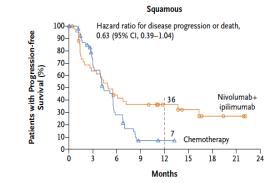

Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden

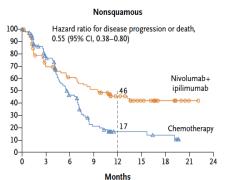
at least 10 mutations per megabase

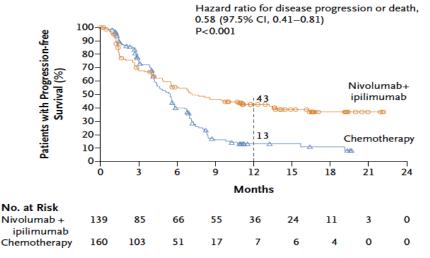
M.D. Hellmann, T.-E. Ciuleanu, A. Pluzanski, J.S. Lee, G.A. Otterson,
C. Audigier-Valette, E. Minenza, H. Linardou, S. Burgers, P. Salman, H. Borghaei,
S.S. Ramalingam, J. Brahmer, M. Reck, K.J. O'Byrne, W.J. Geese, G. Green,
H. Chang, J. Szustakowski, P. Bhagavatheeswaran, D. Healey, Y. Fu, F. Nathan,
and L. Paz-Ares

- 3

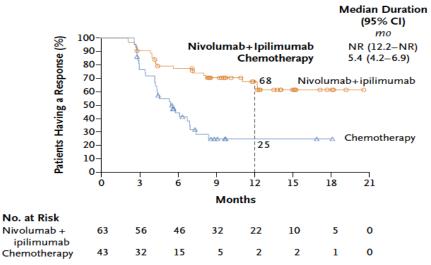
30




112


73 35 13

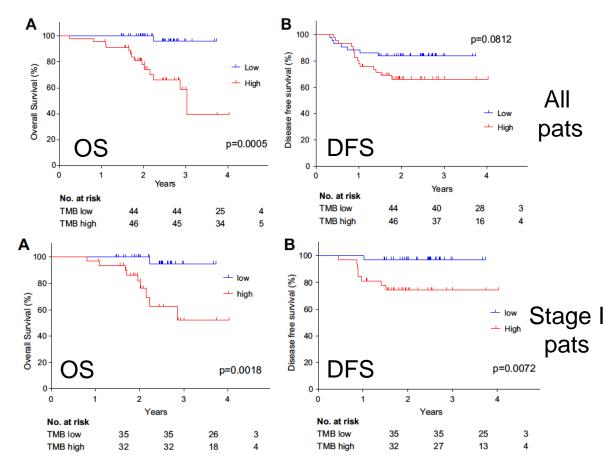
ipilimumab


Chemotherapy

B Duration of Response

0

Survival by TMB

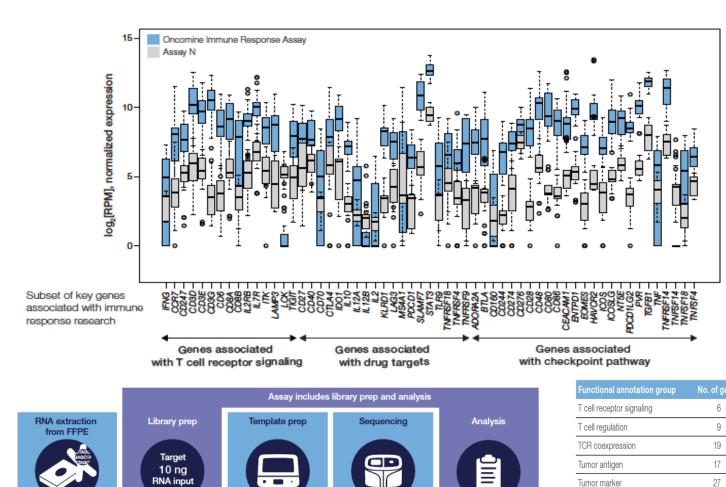

Prognostic Impact of Tumor Mutation Burden in Patients With Completely Resected Non-Small Cell Lung Cancer: Brief Report

Yuki Owada-Ozaki, MD,^a Satoshi Muto, MD, PhD,^a Hironori Takagi, MD,^a Takuya Inoue, MD,^a Yuzuru Watanabe, MD,^a Mitsuro Fukuhara, MD,^a Takumi Yamaura, MD, PhD,^a Naoyuki Okabe, MD, PhD,^a Yuki Matsumura, MD,^a Takeo Hasegawa, MD, PhD,^a Jun Ohsugi, MD, PhD,^a Mika Hoshino, MD, PhD,^a Yutaka Shio, MD, PhD,^a Hideaki Nanamiya, PhD,^b Jun-ichi Imai, PhD,^b Takao Isogai, PhD,^b Shinya Watanabe, MD, PhD,^b Hiroyuki Suzuki, MD, PhD^{a,*}

Journal of Thoracic Oncology

Available online - 11 April 2018

WES: any mutation, cut-off 62


	N = 90	
Median age, yrs (range)	70 (40-87	7)
Gender		
Male / female	63 (70.0%	6) / 27 (30.0%)
Smoking status		
Never smoker	28	(31.1%)
Former or current smoker	62	(68.9%)
Median brinkman Index (range)	675 (45-2	2580)
Tumor size, cm (range)	2.8 (0.8-	11.0)
Histology		
Adenocarcinoma	63	(70.0%)
Squamous cell carcinoma	27	(30.0%)
EGFR-mutation		
Exon21;L858R	14	(15.5%)
Exon19 deletion	8	(8.9%)
Others	2	(2.2%)
Wild-type/Unknown	66	(73.3%)
Pathological stage		
IA	43	(47.8%)
IB	24	(26.7%)
IIA	4	(4.4%)
IIB	8	(8.9%)
IIIA	9	(10.0%)
IIIB	2	(2.2%)
Adjuvant therapy		
Platinum	8	
Others	15	
Recurrence	22	(24.4%)
Treatment for recurrence		
Platinum	10	
EGFR-TKI	5	
Others	5	
Best supportive care	2	
Death	15	(16.7%)
Median TMB (range)	62	(10-502

Immune checkpoint by...

Oncomine Immune Response Research Assay

RecoverAll Total Nucleic

Acid Isolation Kit for FFPE

Oncomine Immune

Response Research Ass

Ion Chef System

- 395 genes
- 36 functional annotation groups

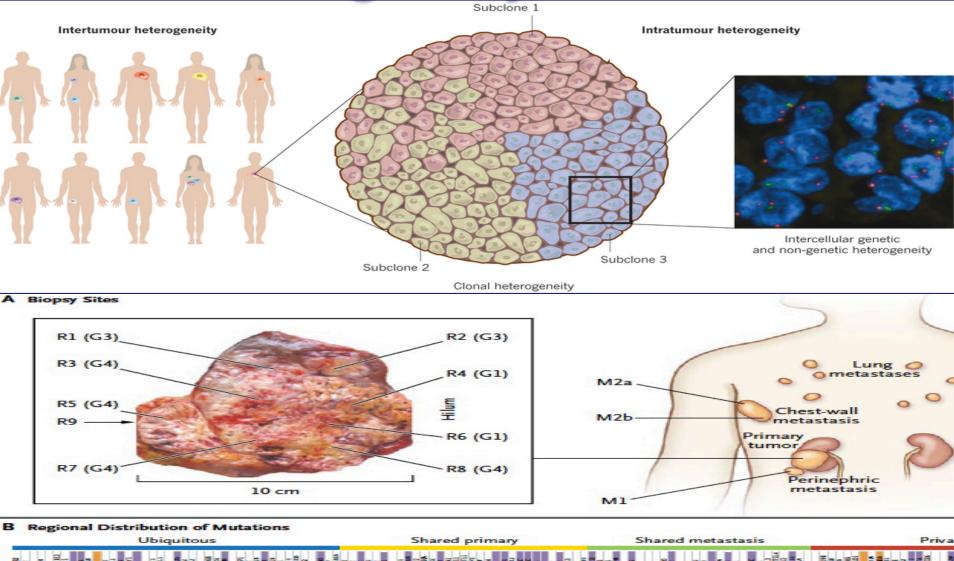
Thermo Fisher

Functional annotation group	No. of genes
Adhesion, migration	14
Antigen presentation	3
Antigen processing	19
Apoptosis	4
B cell marker	11
B cell receptor signaling	3
Checkpoint pathway	30
Chemokine signaling	10
Cytokine signaling	15
Dendritic cell	7
Dendritic cell, macrophage	6
Drug target	21
Helper T cells	8
Housekeeping	11
Innate immune response	11
Interferon signaling	8
Leukocyte inhibition	2
Leukocyte migration	5
Lymphocyte activation	2
Lymphocyte development	3
Lymphocyte infiltrate	46
Macrophage	5
Myeloid marker	7
Neutrophil	5
NK activation	8
NK cell marker	4
PD-1 signaling	9
Proliferation	10
T cell differentiation	2

8

23

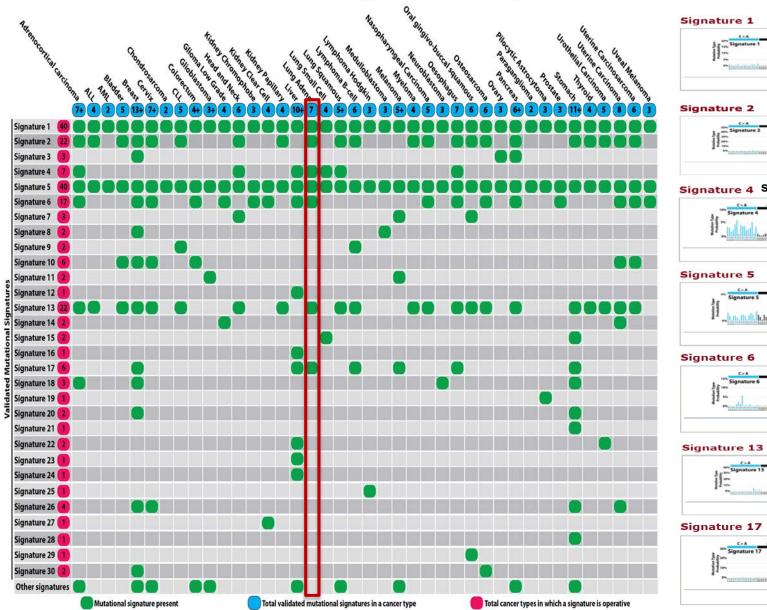
Type I interferon signaling

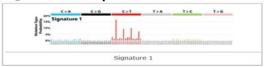

Type II interferon signaling

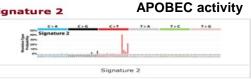
University of Milan

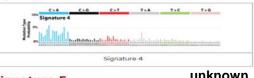
Ion S5 System

Ion Torrent Suite Plug-in

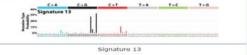


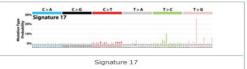




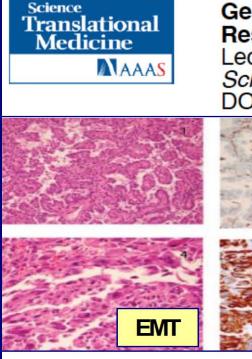

spontaneous deamination

Signature 4 smoke-related DNA damage


unknown


microsatellite instability T>C T>G

Signature 6


APOBEC activity

unknown

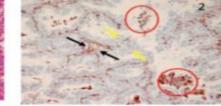
L858R

Exon 19 del

L858R

Exon 19 del

L858R


L858R

Exon 20 ins[‡]

L858R

Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors

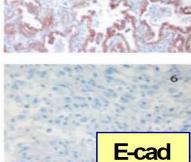
Lecia V. Sequist, et al. Sci Transl Med 3, 75ra26 (2011); DOI: 10.1126/scitranslmed.3002003

Adeno

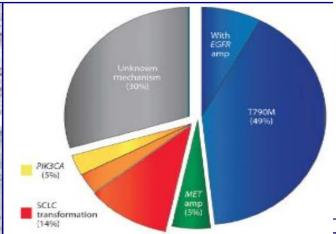
Adeno

Adeno

Adeno


Adeno

Adeno


Adeno

Adeno

SCLC transformation							
SCL	SCLC transformation						
SCLC transformation, PIK3CA							
SCLC transformation							
SCLC transformation							
	EMT						
EMT							
Sarcomatoid CA, loss of β-catenin							

Erlo (22 months)	On
Erlo (3+ years)	On
Erlo (14 months)	On
Erlo (2+ years)	Off (2 months)
Erlo (18 months)	On
Erlo (11 months)	On
Gef (11 months)	On
Erlo (11 months)	Off (2 weeks)

University of Milan

22

23

24

25

26

27

28

29

67

54

56

40

61

66

59

64

F

F

F

F

F

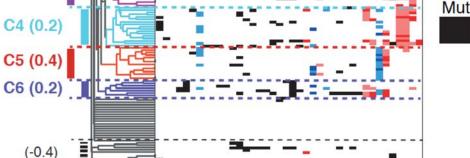
M

Μ

Μ

https://doi.org/10.1007/s00428-018-2307-3

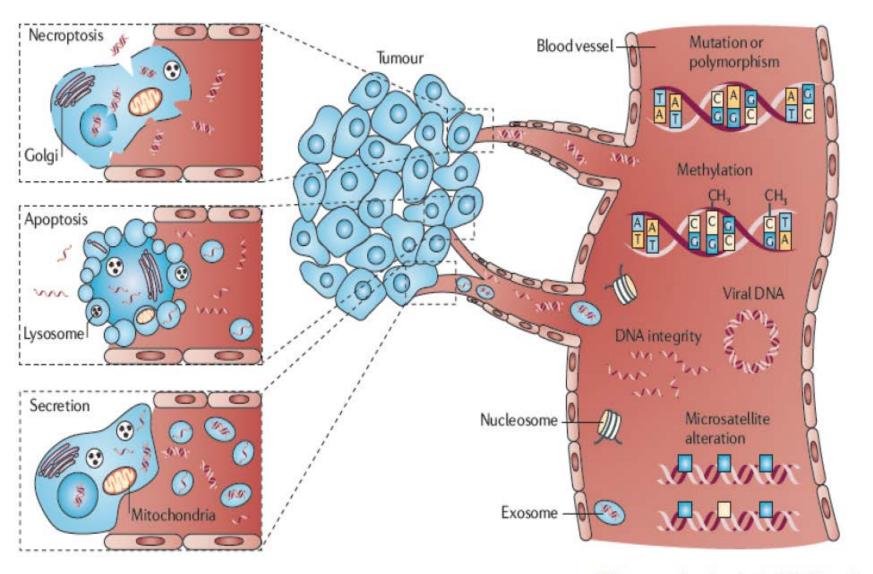
100/148 tumors = 68%


ORIGINAL ARTICLE


Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: innovative fi skipping the current pathogenesis paradigm

Giuseppe Pelosi ^{1,2,3} 🍈 - Fabrizio Bianchi⁴ - Elisa Dama⁴ - Michele Simbolo⁵ - Andrea Mafficini⁵ - / Sara Pilotto⁷ - Sergio Harari⁸ - Mauro Papotti⁹ - Marco Volante¹⁰ - Gabriella Fontanini¹¹ - Luca M Adriana Albini¹³ - Emilio Bria⁷ - Fiorella Calabrese¹⁴ - Aldo Scarpa⁵

в



CNEC

SCI C

Histotype:

Liquid biopsy over time

Schwarzenbach et al., Nat Rev Cancer 2011

cfDNA testing in liquid biopsy

• **Rec:** EGFR mutations when the tissue is an issue (also unwilling or unable patients)...but *if negative* try on tissue biopsy (also to exclude other resistance mechanisms)

Study	ΤР	FP	FN	TN	Detection System	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Douillard 2014 242	² 69	1	36	546	ARMs	0.66 [0.56, 0.75]	1.00 [0.99, 1.00]		
Kukita 2013 234	9	1	3	10	PNA/LNA clamp	0.75 [0.43, 0.95]	0.91 [0.59, 1.00]		
Li 2014 ²⁴³	389	114	214	874	Multiple	0.65 [0.61, 0.68]	0.88 [0.86, 0.90]		
Mok 2015 ²³⁵	72	6	24	136	allele-specific PCR	0.75 [0.65, 0.83]	0.96 [0.91, 0.98]		
Oxnard 2014 ²³²	14	5	7	20	ddPCR	0.67 [0.43, 0.85]	0.80 [0.59, 0.93]		
								0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1
Sensitivity (6 <mark>0-8</mark> 0)%; s	pecif	icity	<mark>80-95%</mark>		Pooled estimate:	0.6640 (0.6272-0.6988)	0.9564 (0.8332-0.9897)

- Exp. Cons. Op.: It is possible to identify T790M in ADC patients with progression or secondary clinical resistance to EGFR-TKI; testing of tumor samples is recommended if the plasma result is negative
- **No Rec:** cfDNA & CTC cannot be used for diagnosis of primary lung cancer; CTC cannot be used for the identification of EGFR or other mutations or EGFR T790M

Rec: recommendation; ECO: expert consensus opinion

