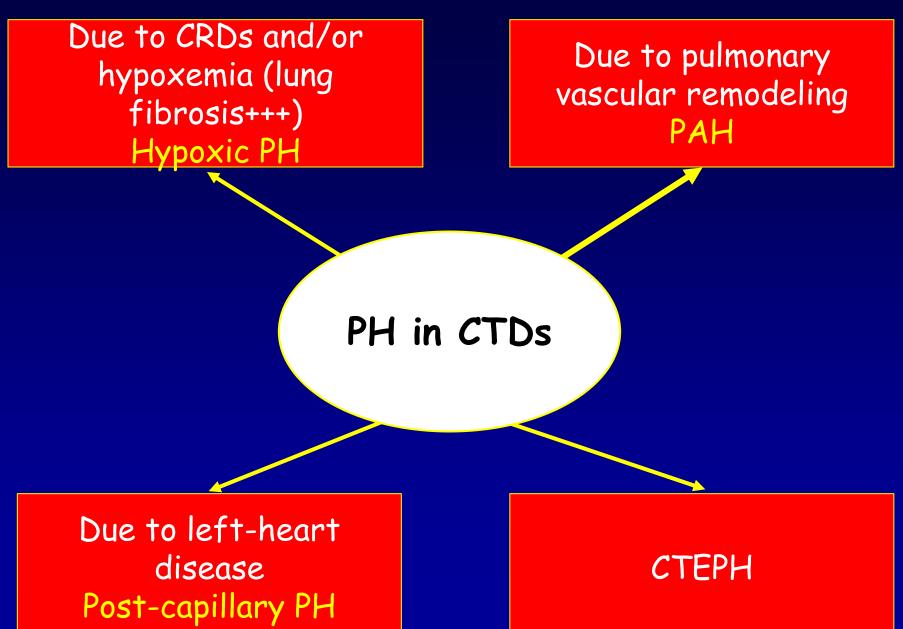


Pneumo-Reuma senza frontiere

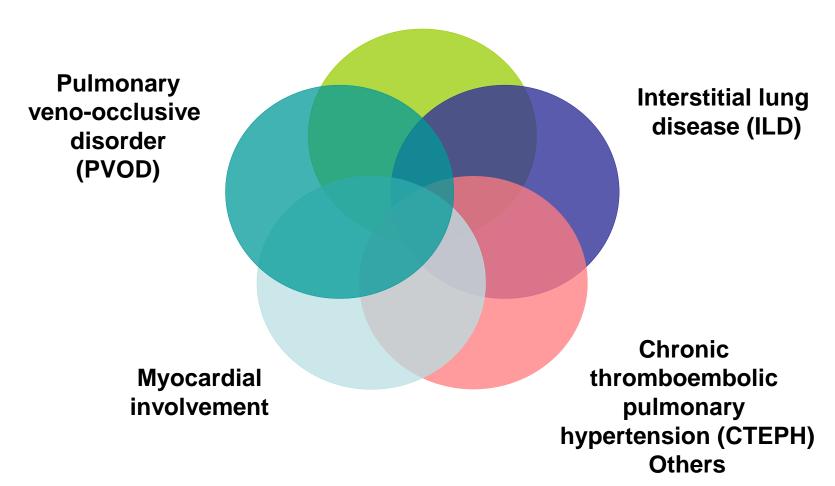
La diagnosi precoce di ipertensione polmonare

XIIL Congresso Italiano della Società Italiana di Reumatologia Milano 21-24 Novembre 2012


Sergio Harari

U.O. Pneumologia e UTIR Servizio di Emodinamica e Fisiopatologia Respiratoria Osp. San Giuseppe - Milano

CTDs


- PAH may complicate a number of autoimmune diseases, such as
 - Systemic sclerosis
 - Systemic lupus erythematosus and antiphospholipids syndrome
 - Mixed connective tissue disease
 - Rheumatoid arthritis
- Most data come from cohorts of SSc patients because PAH is a frequent occurrence in this disease

MULTIPLE MECHANISMS LEADING TO PH IN CTDs

Differential diagnosis of "PH" CTD

Pulmonary arterial hypertension (PAH)

Updated clinical classification of pulmonary hypertension

1 PAH

- 1.1 Idiopathic
- 1.2 Heritable
 - 1.2.1 BMPR2
 - 1.2.2 ALK-1, endoglin (with or without hereditary haemorrhagic telangiectasia)
 - 1.2.3 Unknown
- 1.3 Drugs and toxins induced
- 1.4 Associated with (APAH)
 - 1.4.1 Connective tissue diseases
 - 1.4.2 HIV infection
 - 1.4.3 Portal hypertension
 - 1.4.4 Congenital heart disease
 - 1.4.5 Schistosomiasis
 - 1.4.6 Chronic haemolytic anaemia
- 1.5 Persistent pulmonary hypertension of the newborn
- 1' Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis

BMPR2: bone morphogenetic protein receptor, type 2; ALK-1: activin receptor-like kinase 1 gene; APAH: associated pulmonary arterial hypertension; PAH: pulmonary arterial hypertension. Reproduced from Dana Point [1], with permission from the publisher.

2 Pulmonary hypertension due to left heart disease

- 2.1 Systolic dysfunction
- 2.2 Diastolic dysfunction
- 2.3 Valvular disease

3 Pulmonary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitial lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental abnormalities

4 Chronic thromboembolic pulmonary hypertension

5 PH with unclear and/or multifactorial mechanisms

- Haematological disorders: myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis, lymphangioleiomyomatosis, neurofibromatosis, vasculitis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: tumoural obstruction, fibrosing mediastinitis, chronic renal failure on dialysis

Updated clinical classification of pulmonary hypertension

1 PAH

- 1.1 Idiopathic
- 1.2 Heritable
 - 1.2.1 BMPR2
 - 1.2.2 ALK-1, endoglin (with or without hereditary haemorrhagic telangiectasia)
 - 1.2.3 Unknown
- 1.3 Drugs and toxins induced
- 1.4 Associated with (APAH)
 - 1.4.1 Connective tissue diseases
 - 1.4.2 HIV infection
 - 1.4.3 Portal hypertension
 - 1.4.4 Congenital heart disease
 - 1.4.5 Schistosomiasis
 - 1.4.6 Chronic haemolytic anaemia
- 1.5 Persistent pulmonary hypertension of the newborn
- 1' Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis

BMPR2: bone morphogenetic protein receptor, type 2; ALK-1: activin receptor-like kinase 1 gene; APAH: associated pulmonary arterial hypertension; PAH: pulmonary arterial hypertension. Reproduced from Dana Point [1], with permission from the publisher.

2 Pulmonary hypertension due to left heart disease

- 2.1 Systolic dysfunction
- 2.2 Diastolic dysfunction
- 2.3 Valvular disease

3 Pulmonary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitial lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental abnormalities

4 Chronic thromboembolic pulmonary hypertension

5 PH with unclear and/or multifactorial mechanisms

- Haematological disorders: myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis, lymphangioleiomyomatosis, neurofibromatosis, vasculitis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: tumoural obstruction, fibrosing mediastinitis, chronic renal failure on dialysis

Updated clinical classification of pulmonary hypertension

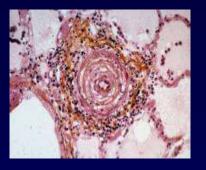
1 PAH

- 1.1 Idiopathic
- 1.2 Heritable
 - 1.2.1 BMPR2
 - 1.2.2 ALK-1, endoglin (with or without hereditary haemorrhagic telangiectasia)
 - 1.2.3 Unknown
- 1.3 Drugs and toxins induced
- 1.4 Associated with (APAH)
 - 1.4.1 Connective tissue diseases
 - 1.4.2 HIV infection
 - 1.4.3 Portal hypertension
 - 1.4.4 Congenital heart disease
 - 1.4.5 Schistosomiasis
 - 1.4.6 Chronic haemolytic anaemia
- 1.5 Persistent pulmonary hypertension of the newborn
- 1' Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis

BMPR2: bone morphogenetic protein receptor, type 2; ALK-1: activin receptor-like kinase 1 gene; APAH: associated pulmonary arterial hypertension; PAH: pulmonary arterial hypertension. Reproduced from Dana Point [1], with permission from the publisher.

2 Pulmonary hypertension due to left heart disease

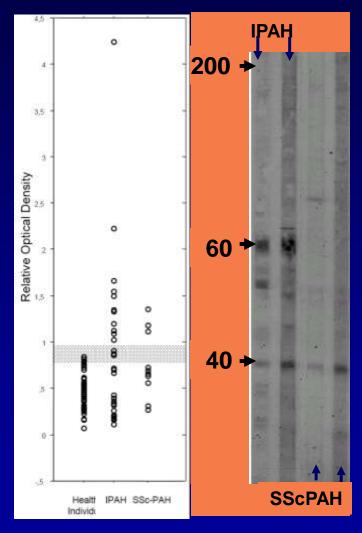
- 2.1 Systolic dysfunction
- 2.2 Diastolic dysfunction
- 2.3 Valvular disease


3 Pulmonary hypertension due to lung diseases and/or hypoxia

- 3.1 Chronic obstructive pulmonary disease
- 3.2 Interstitial lung disease
- 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
- 3.4 Sleep-disordered breathing
- 3.5 Alveolar hypoventilation disorders
- 3.6 Chronic exposure to high altitude
- 3.7 Developmental abnormalities

4 Chronic thromboembolic pulmonary hypertension

5 PH with unclear and/or multifactorial mechanisms


- Haematological disorders: myeloproliferative disorders, splenectomy
- 5.2 Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis, lymphangioleiomyomatosis, neurofibromatosis, vasculitis
- 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
- 5.4 Others: tumoural obstruction, fibrosing mediastinitis, chronic renal failure on dialysis

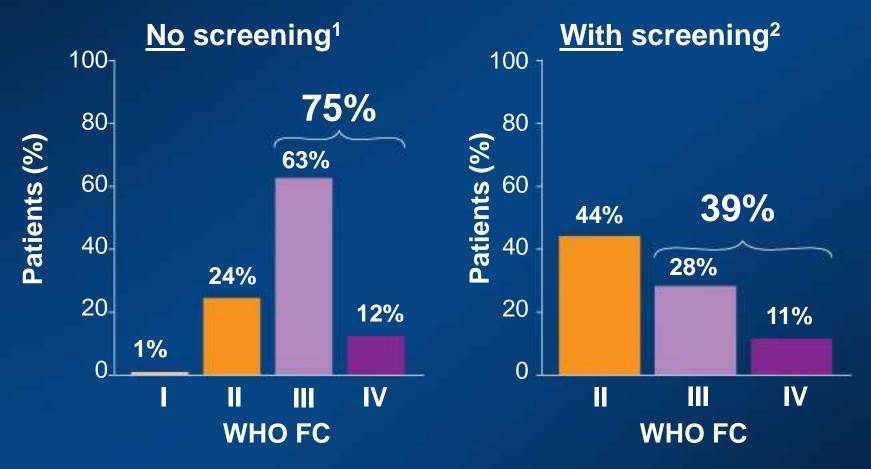
IDIOPATHIC AND SYSTEMIC SCLEROSIS ASSOCIATED PULMONARY ARTERIAL HYPERTENSION

cell

- Pathogenesis includes
 - > Angiogenesis
 - > Inflammation
 - **>**Autoimmunity
 - ✓ anti-endothelial antibodies
 - √anti-fibroblast antibodies
- Perspectives
 - Identification of target antigens
 - Characterisation of function

Tamby MC et al. Thorax 2005; 60: 765-772.

Mouthon et al, Eur Resp J 2005;

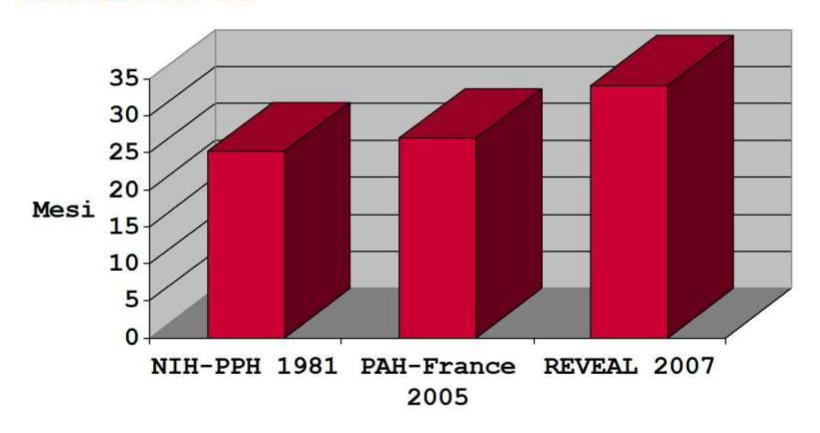

SSc PAH

 In SSc frequency estimated between
 7.5 and 12% (variable between 4 and 38% depending on the study considered)

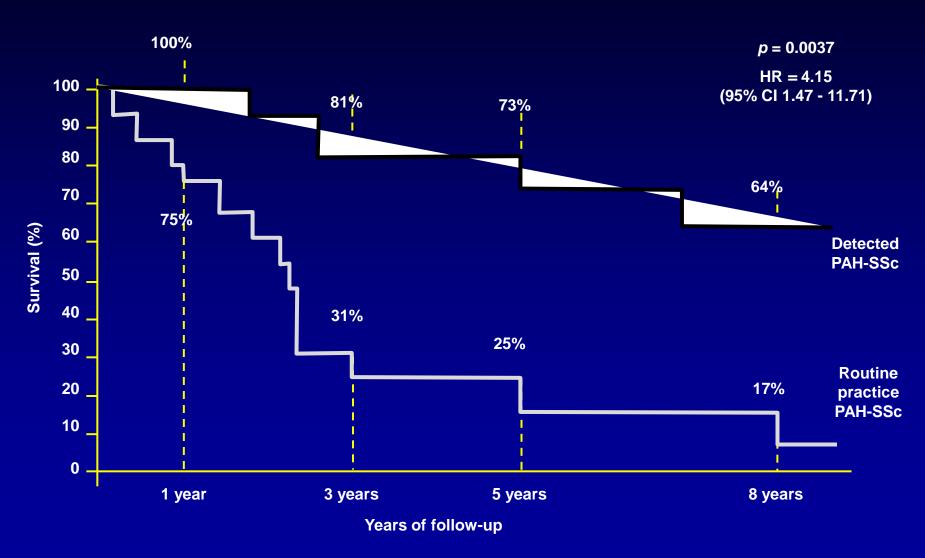
Table 2 Determination of survival in SScPAH: baseline demographic characteristics of 148 patients with SScPAH (89 from our own institution and 59 referred from other institutions) on cardiac catheterisation

Mean age (years)	66 (7)
Male:female	28:120
Mean duration of SSc (years)	14 <u>+</u> 5
Number with pulmonary fibrosis	40
Number of diffuse:lcSSc	37:111
Mean % predicted TLCO (mmol/min/kPa)*	56.7 (3.2)
Number with ACA+	78
Number with Scl70+	37
mRAP (mm Hg)	7.7 (4.8)
mPAP (mm Hg)	39.5 (13.5)
MAP (mm Hg)	93.9 (15.6)
PVR (dyne.s/cm ⁵)	687 (564)
SVR (dyne.s/cm ⁵)	1713 (606)
CI (l/min/m²)	2.6 (1.4)
SVo ₂ (ml/l)	659 (107)

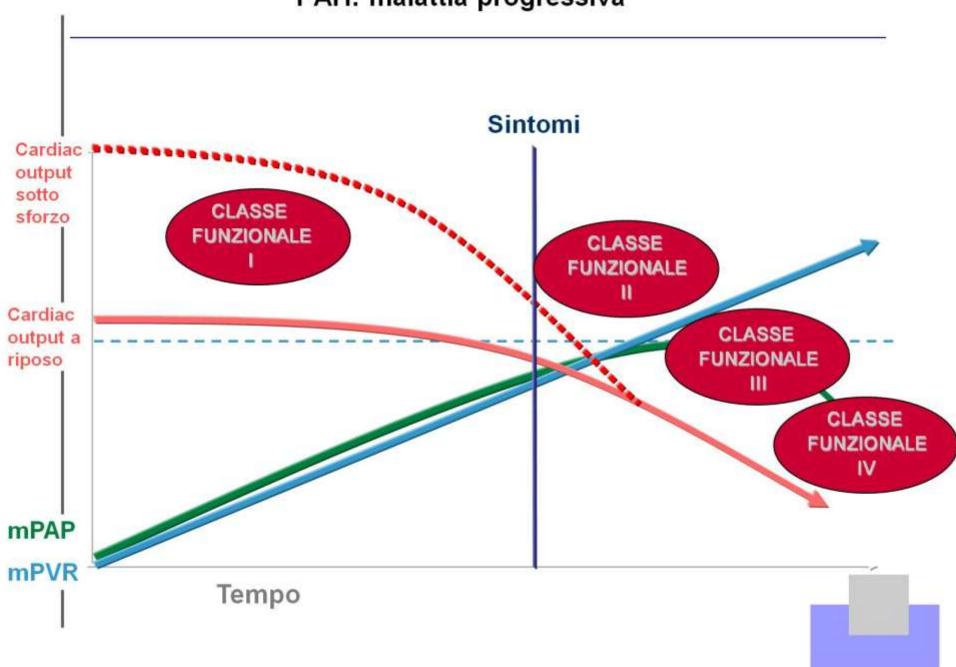
Lo screening è efficace per diagnosticare la malattia

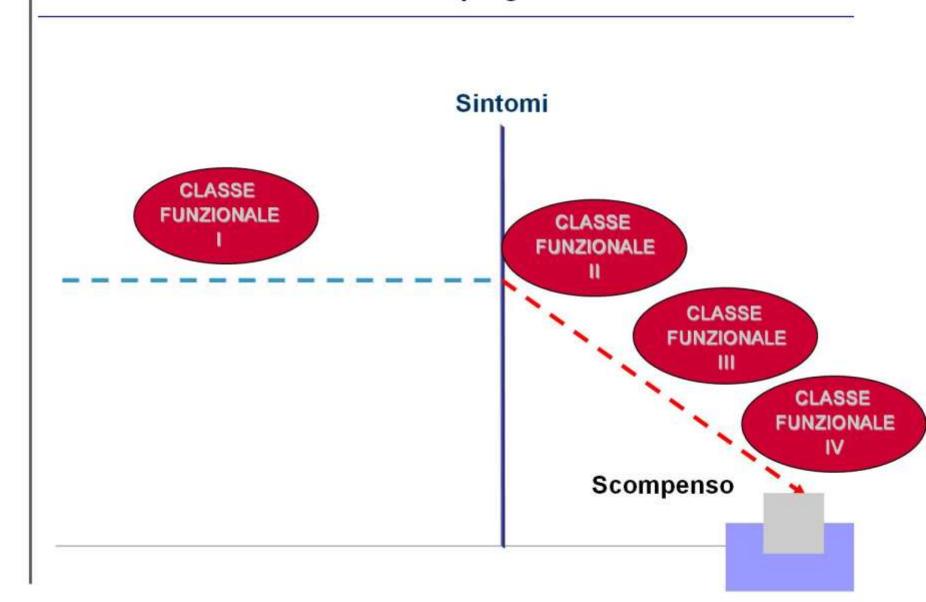

Detection of milder disease with screening

	Systemic Sclerosis ¹		HIV infection ²	
	Previously	Newly	Previously	Newly
	known PAH (n=29)	diagnosed PAH (n=18)	known PAH (n=30)	diagnosed PAH (n=5)
mPAP (mmHg)	49 ± 17	30 ± 9	46 ± 13	30 ± 9
CI (L/min/m²)	2.8 ± 0.7	3.2 ± 1.0	3.0 ± 0.8	3.6 ± 0.8
PVR (d.s.cm ⁻⁵)	1007 ± 615	524 ± 382	800 ± 320	320 ± 240

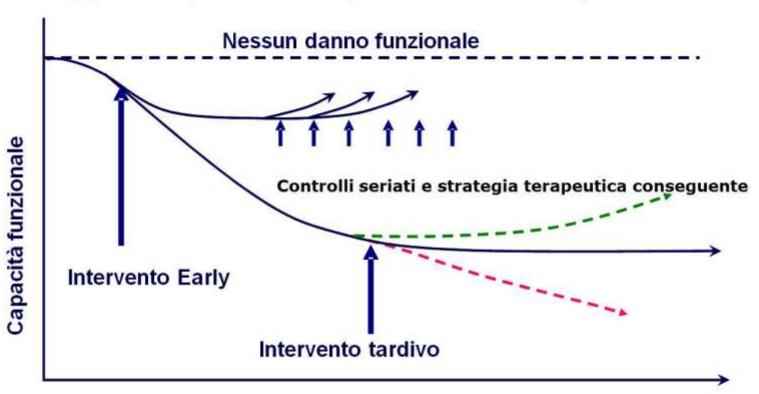

^{1.} Hachulla E, et al. *Arthritis Rheum* 2005;52:3792-800.

^{2.} Sitbon O, et al. Am J Respir Crit Care Med 2008;177:108-13.


Tempo fra valutazione iniziale e cateterismo


Prognosis of "routine practice" and "detected" PAH-SSc patients

PAH: malattia progressiva



PAH: malattia progressiva

Classe funzionale II

Maggiore sopravvivenza per trattati in fase precoce

Pulmonary hypertension: clinical manifestations, classification and diagnosis

M.J. Hegewald, B Markewitz, CG. Elliott. Int J Clin Pract 2007;61 (Suppl. 156):5-14 5.

hypertension initially, and at the time of diagnosis (7)			
	Initial symptom (%)	At diagnosis (%)	
Dyspnoea	60	98	
Fatigue	19	73	
Chest pain	7	47	
Near syncope	5	41	
Syncope	8	36	
Leg oedema	3	37	
Palpitations	5	33	

Primary pulmonary hypertension. A national prospective study. Rich S, Dantzker DR, Ayres SM et al. Ann Intern Med 1987; 107:216-23.

Pulmonary hypertension: clinical manifestations, classification and diagnosis

M.J. Hegewald, B Markewitz, CG. Elliott. Int J Clin Pract 2007;61 (Suppl. 156):5–14 5.

Findings	Per cent of patients
Accentuation of P2	93
Tricuspid regurgitation	40
Right-sided S4	38
Peripheral oedema	32
Right-sided S3	23
Cyanosis	20
Pulmonic insufficiency	13
	e second heart sound; S3, right 4, right ventricular fourth heart

Primary pulmonary hypertension. A national prospective study. Rich S, Dantzker DR, Ayres SM et al. Ann Intern Med 1987; 107:216–23.

Key problems for clinicians

Is interstitial lung disease present?

♦ Is pulmonary hypertension present?

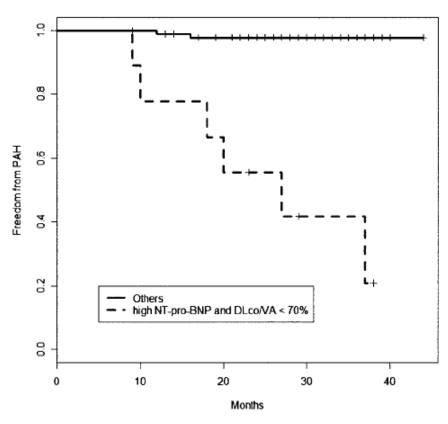
Is it clinically significant?

Is pulmonary hypertension or fibrosis present?

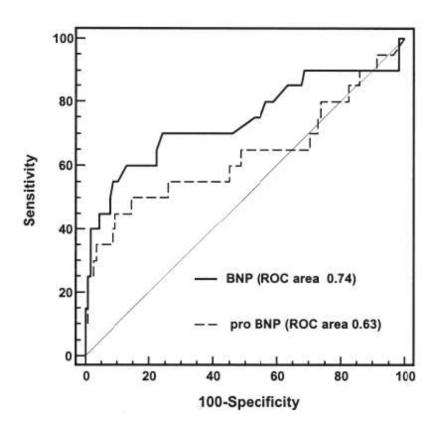
- Symptoms misleading
- Chest radiography insensitive
- Sensitive markers include pulmonary function tests, echocardiography, right heart catheterization

HRCT can sometimes creates its own problems

Is disease clinically significant?

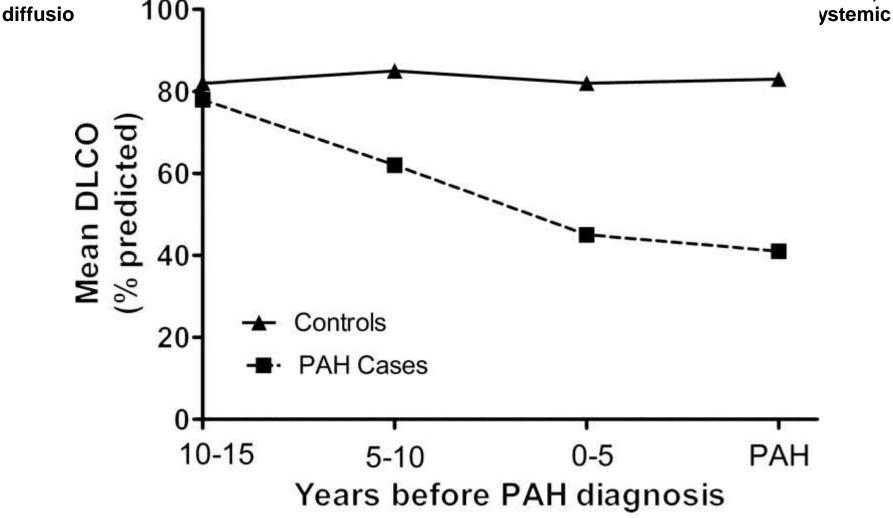


When does a minor abnormality become "disease"?


SSc PAH: risk factors

```
Pulmonary Hypertension
  Risk Factors
    Longstanding (> 10 year), limited SSc
    Anticentromere or antinuclear antibodies
    DLCO < 65% predicted, FVC/DLCO ratio > 1.6
    Mild to moderate fibrosis on CXR or HRCT
    ? Increased resting PASP, ? Exercise PASP
    SOB develops slowly. Patients not always aware
  Diagnosis of Pulmonary Hypertension
    Suspect PHT:
      Late limited, ACA, antinuclear AB, low DLCO, FVC/DLCO > 1.8
      Echo PASP > 30 mm Hg
      Right heart changes
    Exclude:
      Left heart failure
      Pulmonary emboli
      Severe pulmonary fibrosis
      Right heart catheterization
```

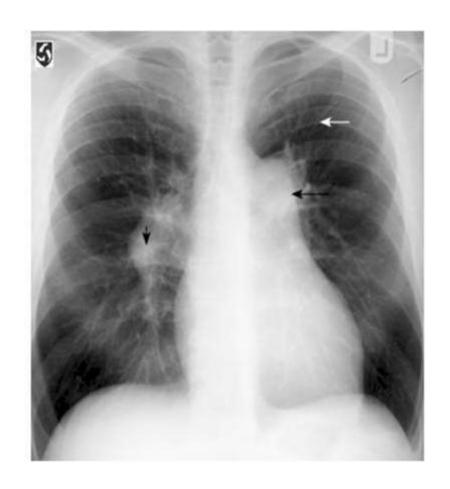
Predictors of PAH in SSc



Allanore Y et al, A&R 2008

Cavagna L et al, J Rheumatol 2010

The relationship between DLCO and the development of SSc-associated PAH. Serial falls in DLCO are predictive of the development of future PAH, suggesting that DLCO monitoring could form part of a screening strategy for PAH in SSc. Redrawn from Steen et al.51 DLCO,

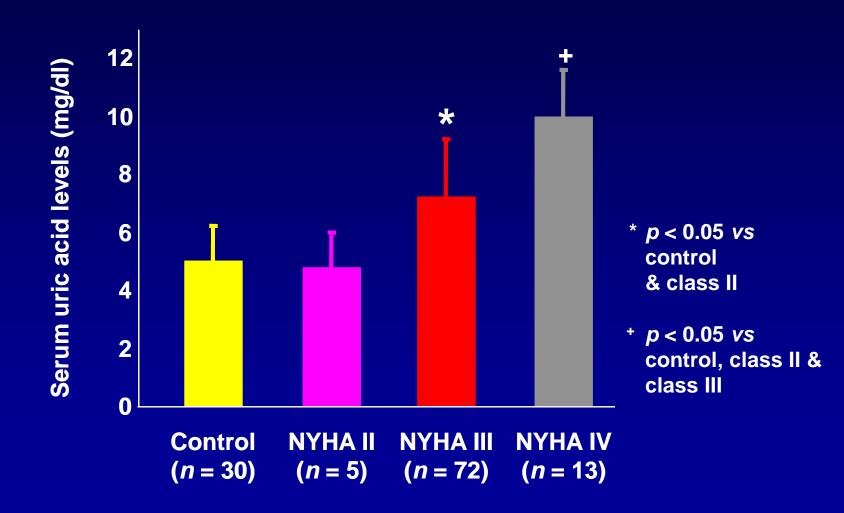

Lau E M et al. Eur Heart J 2011;32:2489-2498

Evaluation

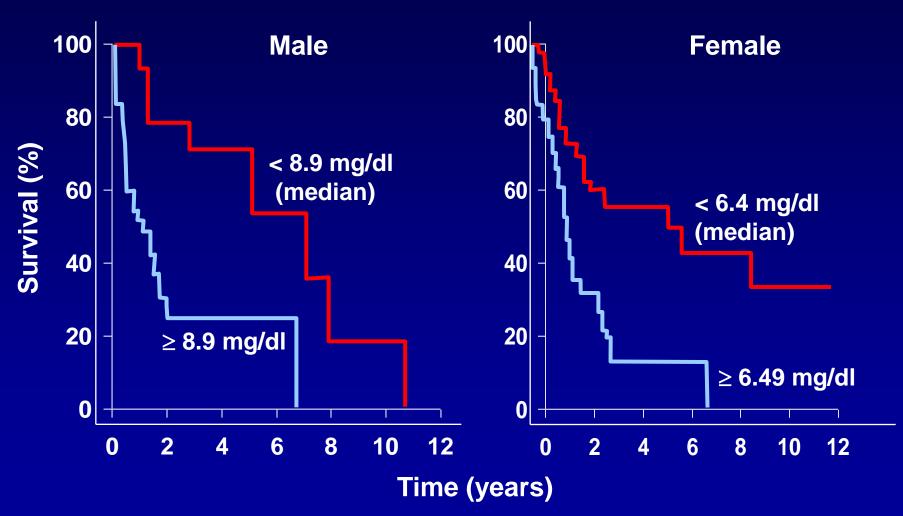
Initial evaluation of the patient with dyspnea should include the following:

- Medical history and physical examination
- Chest x-ray
- Pulmonary function tests
- Computed tomography scan
- Electrocardiogram
- Ventilation/perfusion scan
- Echocardiogram

NON INVASIVE MARKERS OF PAH PROGNOSIS

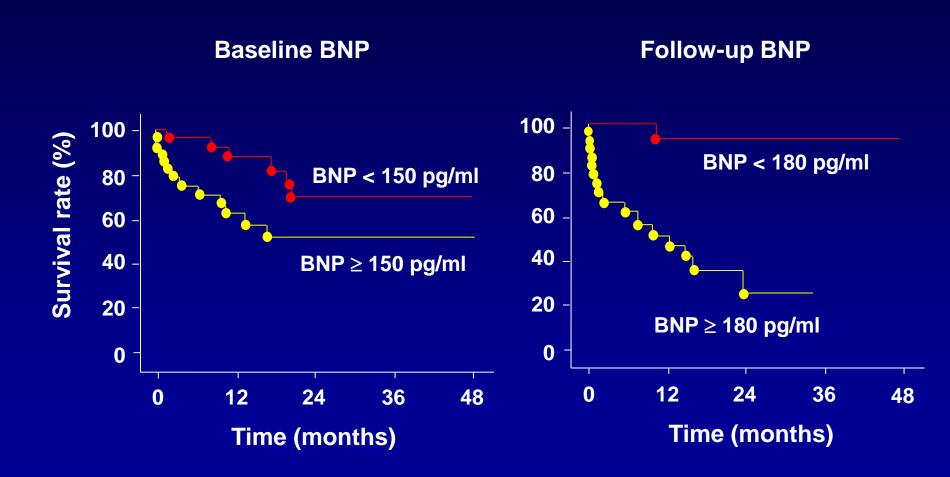

- → Functional class (NYHA/WHO)
- → Biochemical markers (uric acid, BNP, TnT/I)
- → Echocardiography (PE, Tei index, RV-LV function)
- → Exercise studies (6-min walk test, CPET)
- → Hemodynamic variables (RAP, CO, SvO₂)

ASSESSMENT OF PAH SEVERITY BIOLOGICAL MARKERS

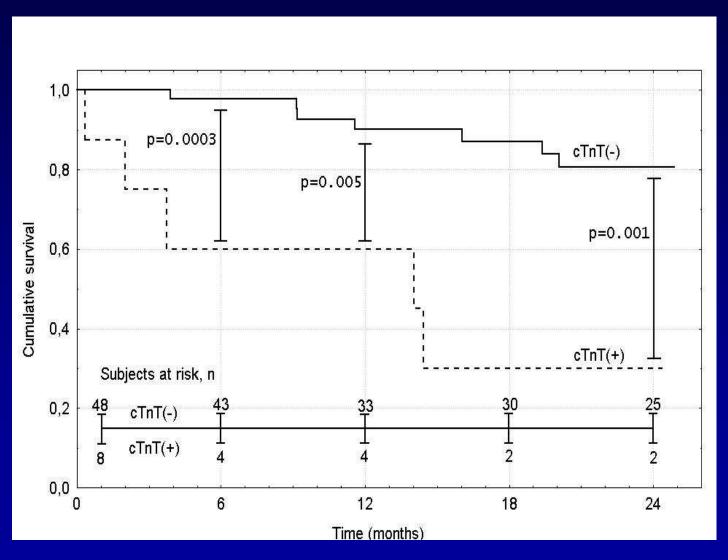

Biological markers of disease severity

- → Uric acid
- → B-type naturetic peptide
- -> Cardiac troponin T

ASSESSMENT OF PAH SEVERITY URIC ACID



ASSESSMENT OF PAH SEVERITY URIC ACID

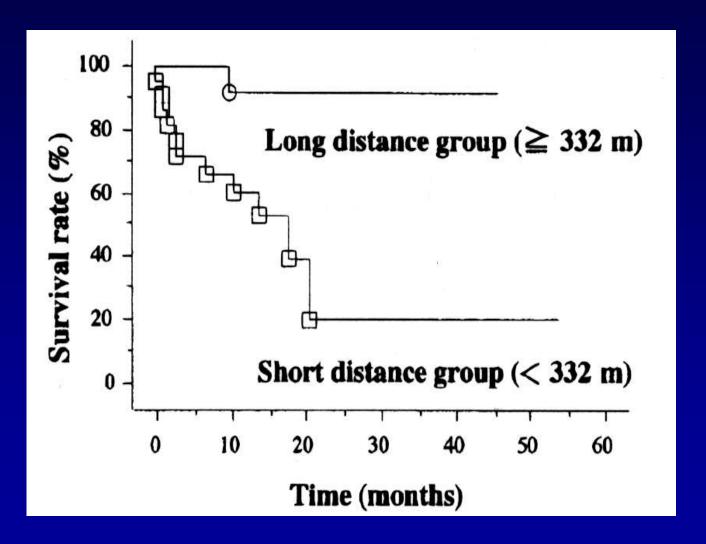


Nagaya N, et al. Am J Respir Crit Care Med 1999; 160:478-492

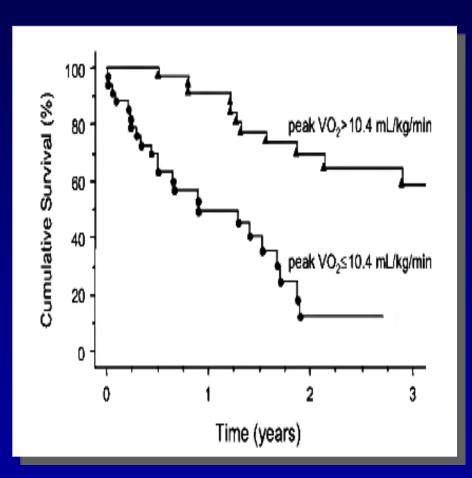
ASSESSMENT OF PAH SEVERITY NATRIURETIC PEPTIDES

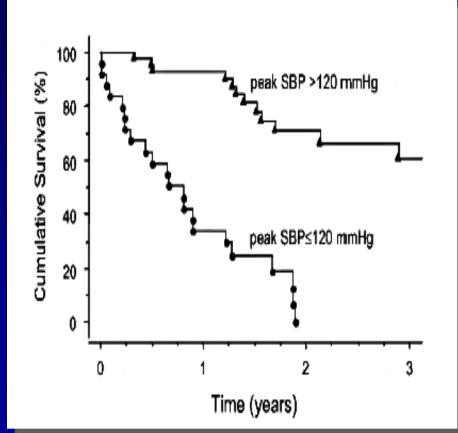
ASSESSMENT OF PAH SEVERITY TROPONIN T

Torbicki A, et al. Circulation 2003


ASSESSMENT OF PAH SEVERITY EXERCISE: 6-MIN WALK TEST

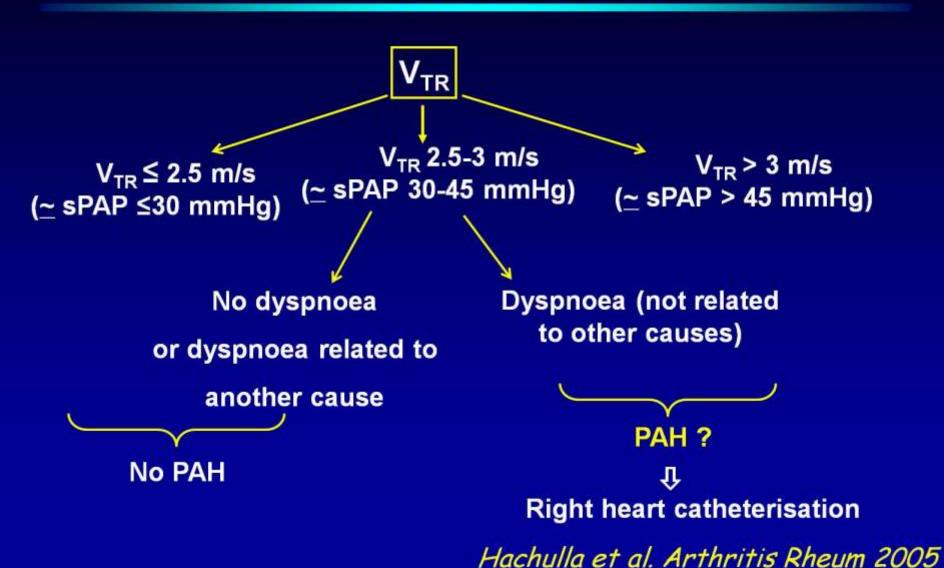
MULTIVARIATE ANALYSIS OF NONINVASIVE VARIABLES ASSOCIATED WITH MORTALITY IN PPH


Variable	Risk Ratio Estimate	95% CI	p Value	
Age	1.024	0.940-1.115	0.5935	
Sex	0.085	0.002-3.598	0.1970	
Heart rate	1.044	0.917-1.189	0.5173	
Sa _{O2}	0.979	0.498-1.924	0.9503	
Pericardial effusion	0.367	0.024-5.530	0.4687	
LV deformity index	1.602	0.317-8.100	0.5689	
Plasma NE	1.000	0.998-1.003	0.7467	
Distance walked in 6 min	0.986	0.973-0.999	0.0381	


Definition of abbreviations: CI = confidence interval; LV = left ventricular; NE = norepinephrine; $Sa_{O_2} = arterial oxygen saturation$.

ASSESSMENT OF PAH SEVERITY EXERCISE: 6-MIN WALK TEST

ASSESSMENT OF PAH SEVERITY CARDIO-PULMONARY EXERCISE TESTING


Uses of exercise testing in lung disease

- Is exercise capacity impaired and is it consistent with symptoms?
- Is exercise impairment related to lung disease alone or do other conditions contribute?
- What physiological mechanisms contribute to exercise impairment?
- Prescription of exercise training program or oxygen during exercise

Criteri per diagnosi di PH dalla misurazione della velocità di flusso del rigurgito tricuspidale

	Classa	Levelb

Echocardiographic diagnosis: PH unlikely		
Tricuspid regurgitation velocity ≤2.8 m/s, PA systolic pressure ≤36 mmHg, and no additional echocardiographic variables suggestive of PH	1	В
Echocardiographic diagnosis: PH possible	*********	************
Tricuspid regurgitation velocity ≤2.8 m/s, PA systolic pressure ≤36 mmHg, but presence of additional echocardiographic variables suggestive of PH	lla	С
Tricuspid regurgitation velocity 2.9–3.4 m/s, PA systolic pressure 37–50 mmHg with/without additional echocardiographic variables suggestive of PH	lla	С
Echocardiographic diagnosis: PH likely		********
Tricuspid regurgitation velocity > 3.4 m/s, PA systolic pressure > 50 mmHg, with/without additional echocardiographic variables suggestive of PH	1	В
Exercise Doppler echocardiography is not recommended for screening of PH	111	С

CARDIAC ECHO DOPPLER SCREENING FOR PAH IN SYSTEMIC SCLEROSIS

CTD-APAH patients have

- better hemodynamics but higher prevalence of pericardial effusion
- lower 6-MWD
- Higher BNP levels
- Lower DLCO
- SSc-APAH vs other CTDs have
 - Similar hemodynamics but
 - Higher BNP and lower DLCO

Cateterismo destro

Definizione di PAH mPAP >25 mmHg a riposo o >30 mmHg durante esercizio fisico con PCWP normale

Why is PH/PAH-SSc so difficult to treat?

- Older patients
- Interstitial lung disease
- Left ventricular diastolic dysfunction
- Right ventricular diastolic dysfunction
- More severe structural vasculopathy
- Key outcome measures may differ (6 MWT-RHC ?)
- More inflammation

RHEUMATOLOGY

Concise report

doi:10.1093/rheumatology/kep449

Pulmonary arterial hypertension associated with systemic sclerosis in patients with functional class II dyspnoea: mild symptoms but severe outcome

Eric Hachulla¹, David Launay¹, Azzedine Yaici^{2,3,4}, Alice Berezne⁵, Pascal de Groote^{4,6}, Olivier Sitbon^{2,3,4}, Luc Mouthon⁵, Loïc Guillevin⁵, Pierre-Yves Hatron¹, Gérald Simonneau^{2,3,4}, Pierre Clerson⁷ and Marc Humbert^{2,3,4}, on behalf of the French PAH-SSc Network*

Take home messages

- PAH may frequently complicate CTDs
- Among CTDs, Systemic Sclerosis-associated PAH represents a unique phenotype for clinical presentation and outcome
- Screening of PAH is mandatory in SSc patients at any time of the disease course
- A big effort is needed in identifying the earliest predictors of this complication in order to make the most of the new therapeutic armamentarium
- A multidisciplinary management may improve diagnosis and outcome

MEETING ON PULMONARY RARE DISEASES AND ORPHAN DR UGS

PRESIDENT SERGIO HARARI

MILANO – ITALY CONGRESS CENTER PALAZZO DELLE STELLINE

FEBRUARY 8-9, 2013

http://www.pulmonaryrarediseases.com