Con il patrocinio di

Associazione Italiana Pneumologi Ospedalieri

PNEUMOLOGIA 2016

Milano, 16 – 18 giugno 2016 · Centro Congressi Palazzo delle Stelline

PNEUMOLOGIA 2016

Milano, 16 – 18 giugno 2016 · Centro Congressi Palazzo delle Stelline

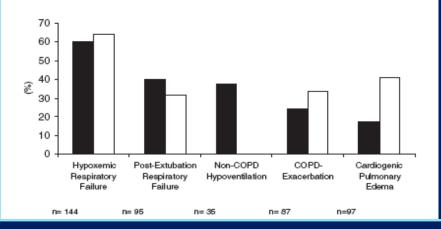
Quando la NIV non basta

Andrea Vianello Fisiopatologia e Terapia Intensiva Respiratoria Ospedale-Università di Padova

REVIEW ARTICLES

Complications of non-invasive ventilation techniques: a comprehensive qualitative review of randomized trials

M. Carron¹, U. Freo^{1*}, A. S. BaHammam², D. Dellweg³, F. Guarracino⁴, R. Cosentini⁵, P. Feltracco¹, A. Vianello⁶, C. Ori¹ and A. Esquinas⁷


Sixty-two RCTs including a total of 5870 patients

Study	Site	Interface*	Ventilation mode*	Patients (n)*	Failure (%)* ^{,†}	Minor complications (%)		Study	Site	Interface*	Ventilation mode*	Patients (n)*	Failure (%)* ^{,†}	Minor complications (%)
COPD								Martin and a lla anno 67	1011	The state of the state	104.0 · 504.0/00		20/50	10
Bott and colleagues ¹⁰	Ward	Nasal mask	CPAP/SC	30/30	10/30	NR		Martin and colleagues ⁴⁷	ICU	Facial mask	IPAP+EPAP/SC	32/29	28/59	NR
Brochard and colleagues ¹¹	ICU	Facial mask	PSV/SC	43/42	26/74	NL: 2		Gay and colleagues ⁴⁸	ICU	Facial mask	PSV+PEEP/PAV+PEEP	23/21	4/10	NL: 26; C: 11
Barbé and colleagues ¹²	Ward	Nasal mask	IPAP+EPAP/SC	14/10	29/NR	NR		Kwok and colleagues ⁴⁹	ICU	Nasal/facial	IPAP+EPAP/ IPAP+EPAP	35/35	23/23	I: 34(NM) - 11 (FM)
Plant and colleagues ¹³	ED	Facial-nasal mask	PSV+PEEP/SC	118/118	15/23	NR		,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		mask				
Conti and colleagues ¹⁴	ICU	Facial mask/TI	PSV/ACV+PEEP	23/26	52/NR	NR		Fernández-Vivas and	ICU	Facial mask	PSV+PEEP/ACV+PEEP	59/58	37/34	NL: 26; GI: 6 EL: 9; I: 13
Keenan and colleagues ¹⁵	ICU	Facial mask	IPAP+EPAP/SC	25/27	8/ 7	I: 12		colleagues ⁵⁰						
Kirakli and colleagues ¹⁶	ICU	Facial mask	Powerson and		27.990	* *		to and good			V+PEEP	31/33	58/100	NL: 13
Carrera and colleagues ¹⁷	ED	Facial mask	IF											
Maggiore and colleagues ¹⁸	ICU	Facial mask	P:								AP+EPAP	17/17	6/0	CFM: 6; GI: 6; EL: 6
ACPO											+ PEEP	46/44	20/14	AL: 68 (NM)
Bersten and colleagues ¹⁹	ED-ICU	facial mask	C											
Mehta and colleagues ²⁰	ED-ICU	Nasal mask	If							' /		42/44	24/27	NR
Masip and colleagues ²¹	ICU	Facial mask	P.				1			-1				
Levitt ²²	ED	Facial mask	If											
Nava and colleagues ²³	ED	Facial mask	P.	-	_				_			24/24	21/50	I: 13
Bellone and colleagues ²⁴	ED ED	Facial mask	P. II									99/105	1/5	NL: 4; I: 9
Crane and colleagues ²⁵	ED	Facial mask	11 P.									105/104	1/10	NR
Bellone and colleagues ²⁶ Moritz and colleagues ²⁷	ED	Facial mask Facial mask	P. If					16.						
Ferrari and colleagues ²⁸	HDU	Facial mask	I) D											
Gray and colleagues ²⁹	ED	Facial mask	C.									47/46	28/15	NR
Rusterholtz and colleagues ³⁰	ICU	Facial mask	e P/									39/42	72/69	NR
Ferrari and colleagues ³¹	ED	Facial mask	PSV+PEEP/CPAP	40/40	8/0	NR		Esteban and colleagues ⁶⁰	ICU	Facial mask	PSV+PEEP/SC	114/104	48/48	I: 3
Nouira and colleagues 32	ED	Facial mask	PSV+PEEP/CPAP	99/101	7/10	NR		Nava and colleagues ⁶¹	ICU	Facial mask	IPAP+EPAP/SC	48/49	8/24	I: 8; NL: 29; EL: 4;
Hypoxic ARF								Hava ana concegues	100	Tuclut Husk		4045	0/24	NC: 4;0D: 2
Wysocki and colleagues ³³	ICU	Facial mask	PSV+PEEP/SC	21/20	62/70	NR		Kindgen-Milles and	ICU	Nasal mask	CPAP/SC	25/25	4/16	NR
Antonelli and colleagues ³⁴	ICU	Facial mask/TI	PSV+PEEP/SC	32/32	31/47	NL: 5		colleagues ⁶²	100	NUSUL THUSK	CFAF/JC	23/23	4/10	INIX
Delclaux and colleagues ³⁵	ICU	Facial mask	CPAP/SC	62/61	34/39	I: 14; NL: 3; GI: 2								
Hilbert and colleagues ³⁶	ICU	Facial mask	PSV+PEEP/SC	26/26	46/77	NL: 23		Ferrer and colleagues ⁶³	ICU	Facial mask	IPAP+EPAP/SC	79/83	11/22	NL: 6; GI: 1
Ferrer and colleagues ³⁷	ICU	Facial mask	PSV+PEEP/SC	51/54	25/52	NL: 25; GI: 2; EL: 6		Ferrer and colleagues ⁶⁴	ICU	Facial mask	IPAP+EPAP/SC	54/54	11/19	NR
Cosentini and colleagues ³⁸	HDU	Helmet	CPAP/SC	20/27	0/0	I: 5		Zarbock and colleagues ⁶⁵	POICU	Nasal mask	CPAP/SC	232/236	1/3	NR
Fartoukh and colleagues ³⁹	ED- ward	Facial mask	PSV+PEEP-IPAP+EPAP/ SC	35/36	6/NR	NR		Khilnani and colleagues ⁶⁶	ICU	Facial mask	PSV+PEEP/SC	20/20	15/25	7
Gupta and colleagues ⁴⁰	ICU	Facial mask	PSV+PEEP/SC	28/25	7/16	NR			100	racial mask	Tot The Let / De	20/20	13/23	·
Wermke and colleagues ⁴¹	Ward	Facial mask	PSV+PEEP/SC	43/44	14/25	NR		Weaning						
Hypoxic-hypercapnic ARF								Nava and colleagues ⁶⁷	ICU	Facial mask/TI	PSV+PEEP/PSV+PEEP	25/25	12/32	NL: 56; GI: 2
Kramer and colleagues ⁴²	ICU	Nasal mask	IPAP+EPAP/SC	16/15	31/73	NL: 13; AL: 13; I: 13		Girault and colleagues ⁶⁸	ICU	Facial mask	PSV+PEEP/PSV+PEEP	16/17	24/25	NR
Wood and colleagues43	ED	Nasal mask	IPAP+EPAP/SC	11/16	31/68	PNX: 6		Ferrer and colleagues ⁶⁹	ICU	Facial mask	PSV+PEEP/PSV+PEEP	21/22	14/27	NL: 29; GI: 5
Celikel and colleagues ⁴⁴	ICU	Facial mask	PSV+PEEP/SC	15/15	7/40	NL: 46; GI: 6		Trevisan and colleagues ⁷⁰	ICU	Facial mask	PSV+PEEP/PSV+PEEP	21/22	21/NR	NL: 4
Confalonieri and	ICU	Nasal mask	PSV+PEEP/SC	28/28	21/61	GI: 4								
colleagues ⁴⁵								Girault and colleagues ⁷¹	ICU	Facial mask	PSV+PEEP/SC	68/70	32/29	GI: 7; I: 7
Antonelli and colleagues ⁴⁶	ICU	Facial mask	PSV+PEEP/SC	20/20	20/70	NL: 5								

BJA

NIV – Real Life

- Evaluation of all 449 patients receiving NPPV for a 1-yr period for acute or acute on chronic RF
 - CPE (n=97)
 - AECOPD (n=87)
 - non-COPD acute hypercaphic RF (n=35)
 - postextubation RF (n=95)
- acute hypoxemic RF (n=144)
 Intubation rate was 18%, 24%, 38%, 40%, and 60%, respectively
 Hospital mortality for patients with acute hypoxemic RF who failed NPPV was 64%

No. of Patients	COPD Exacerbation (n = 87)	Non-COPD Hypercapnic Respiratory Failure (n = 35)	Acute Hypoxemic Respiratory Failure (n = 144)	Cardiogenic Pulmonary Edema (n = 97)	Postextubation Respiratory Failure (n = 95)
Mask intolerance Refractory hypoxemia	1		1 43	1	17
Refractory respiratory acidosis	8	4	8	1	4
Depressed mental status	5	5	11	1	5
Secretion accumulation			2		
Vomiting/aspiration			1		1
Severe arrhythmia			2	1	1
Hemodynamic instability			7	3	1
Cardiorespiratory arrest or risk for arrest	4	3	2	3	4
Surgical procedure	1		5	4	
Other/unknown	2	1	5	2	5
Total, n	21	13	87	17	38
Intubation rate, %	24	37	60	18	40

Schettino G. Crit Care Med 2008; 36:441-7

Use of Noninvasive Ventilation in Patients with Acute Respiratory Failure, 2000–2009

A Population-Based Study

Allan J. Walkey¹ and Renda Soylemez Wiener^{2,3}

AnnalsATS Volume 10 Number 1 February 2013

- Rationale: evidence supporting use of NIV varies widely for different causes of ARF.
- Population: 11,659,668 cases of ARF from the Nationwide Inpatient Sample during years 2000 to 2009;
- Objectives: To compare utilization trends and outcomes associated with NIV in patients with and without COPD.

Use of Noninvasive Ventilation in Patients with Acute Respiratory Failure, 2000–2009

A Population-Based Study

Allan J. Walkey¹ and Renda Soylemez Wiener^{2,3}

AnnalsATS Volume 10 Number 1 February 2013

Acute respiratory failure-associated diagnosis

COPD Cardiogenic pulmonary edema Asthma Pneumonia Sepsis Neurological condition Other/unknown

- 344,707 (40.9) 155,396 (18.5) 12,067 (1.4) 121,682 (14.5) 24,763 (2.9) 35,463 (4.3) 146,777 (17.4)
- 597,022 (35.7) 293,862 (17.6) 54,877 (3.3) 314,339 (18.8) 79,744 (4.8) 91,995 (5.5) 241,634 (14.4)

Changing etiologies of ARF among patients receiving NIV

Use of Noninvasive Ventilation in Patients with Acute Respiratory Failure, 2000–2009

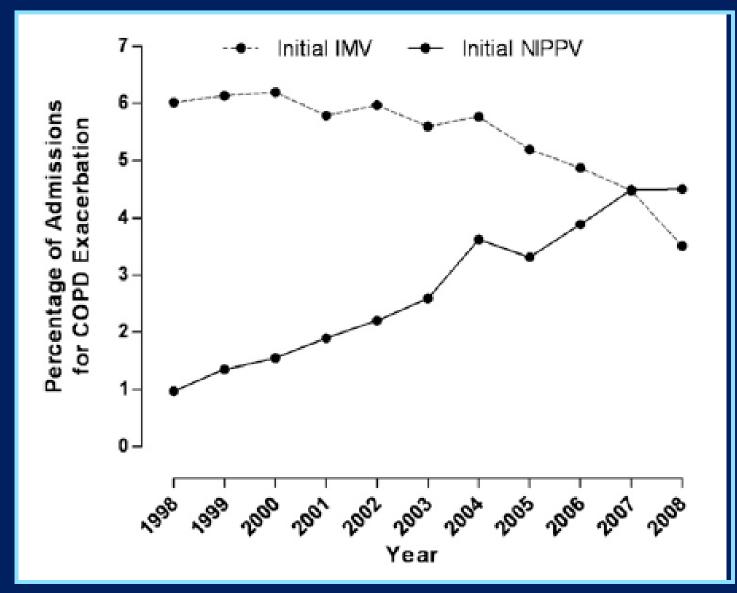
A Population-Based Study

Allan J. Walkey¹ and Renda Soylemez Wiener^{2,3}

AnnalsATS Volume 10 Number 1 February 2013

 • 20% of patients without a COPD diagnosis who received NIV → IMV;

• 13.4% of patients with COPD who received NIV \longrightarrow IMV;

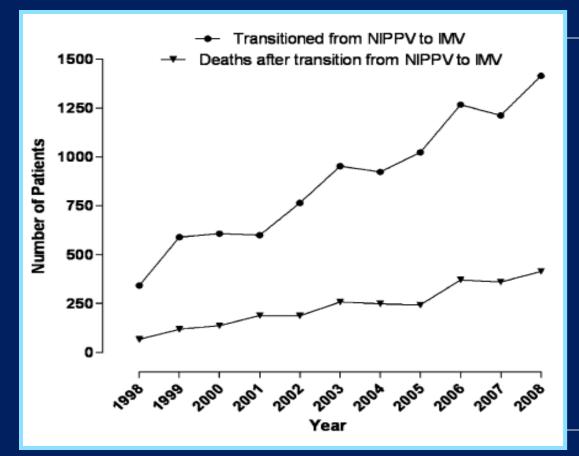

 Patients experiencing NIV failure before transition to IMV had greater hospital mortality than those initially on IMV.

Outcomes of Noninvasive Ventilation for Acute Exacerbations of Chronic Obstructive Pulmonary Disease in the United States, 1998–2008

Divay Chandra^{1*}, Jason A. Stamm^{1*}, Brian Taylor², Rose Mary Ramos¹, Lewis Satterwhite², Jerry A. Krishnan³, David Mannino⁴, Frank C. Sciurba¹, and Fernando Holguín¹

¹University of Pittsburgh, Pittsburgh, Pennsylvania; ²Emory University, Atlanta, Georgia; ³University of Illinois at Chicago, Chicago, Illinois; and ⁴University of Kentucky, Lexington, Kentucky

- Rationale: The patterns and outcomes of NIV use in patients hospitalized for AECOPD nationwide are unknown.
- Population: 7,511,267 admissions for acute AE occurred from 1998 to 2008;
- Objectives: To determine the prevalence and trends of NIV in AECOPD.


Use of NIPPV or IMV as first-line respiratory support in patients hospitalized with AECOPD

AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 185 2012

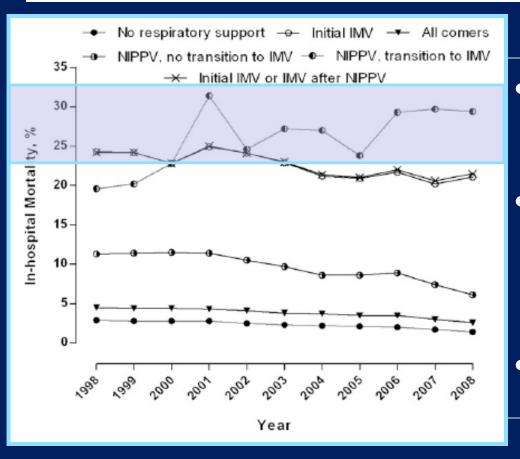
Outcomes of Noninvasive Ventilation for Acute Exacerbations of Chronic Obstructive Pulmonary Disease in the United States, 1998–2008

Divay Chandra^{1*}, Jason A. Stamm^{1*}, Brian Taylor², Rose Mary Ramos¹, Lewis Satterwhite², Jerry A. Krishnan³, David Mannino⁴, Frank C. Sciurba¹, and Fernando Holguín¹

¹University of Pittsburgh, Pittsburgh, Pennsylvania; ²Emory University, Atlanta, Georgia; ³University of Illinois at Chicago, Chicago, Illinois; and ⁴University of Kentucky, Lexington, Kentucky

The percentage of patients transitioned from NIV to IMV ≈ 5% and did not increase from 1998 to 2008

AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 185 2012


Reasons for low rate of IMV use after NPPV, compared to clinical trial:

- End of life decision to not accept IMV
- Patients died before IMV could be started
- Good selection of appropriate patients

Outcomes of Noninvasive Ventilation for Acute Exacerbations of Chronic Obstructive Pulmonary Disease in the United States, 1998–2008

Divay Chandra^{1*}, Jason A. Stamm^{1*}, Brian Taylor², Rose Mary Ramos¹, Lewis Satterwhite², Jerry A. Krishnan³, David Mannino⁴, Frank C. Sciurba¹, and Fernando Holguín¹

¹University of Pittsburgh, Pittsburgh, Pennsylvania; ²Emory University, Atlanta, Georgia; ³University of Illinois at Chicago, Chicago, Illinois; and ⁴University of Kentucky, Lexington, Kentucky

High mortality rate (≈30%);↑ over time
OR for death:1.63, compared to those initially on IMV
↑ hospital stay

AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 185 2012

Aetiology of NIV failure

A. Failure to adequately ventilate/oxygenate

- A. Delayed NIV treatment
- **B.** Inappropriate ventilatory technique
- C. Patient's clinical condition
- B. Dependence on non-invasive support

Lack of improvement of acute illness

C. Complications

NIV reasons for failure

	ACPE	COPD	Non COPD	ALI/ARDS
Hypoxemia	+	+		+++
Hypercapnia	+	++	+	
Leak/Mask intol	+	+	++	++
Secretion		+	+	+
Mentation	+	+	+	+
Agitation		+		++
Progression			+	+++
Failure Rate	18%	24%	37%	60%

Schettino G. Crit Care Med 2008; 36:441-7

Transition to IMV: when is in the interest of a patient?

- Hospital mortality: 64% (Schettino, 2008)
- Mortality rate: 30%; prolonged hospitalization (Chandra, 2011)
- Great hospital mortality (Walkey, 2013)

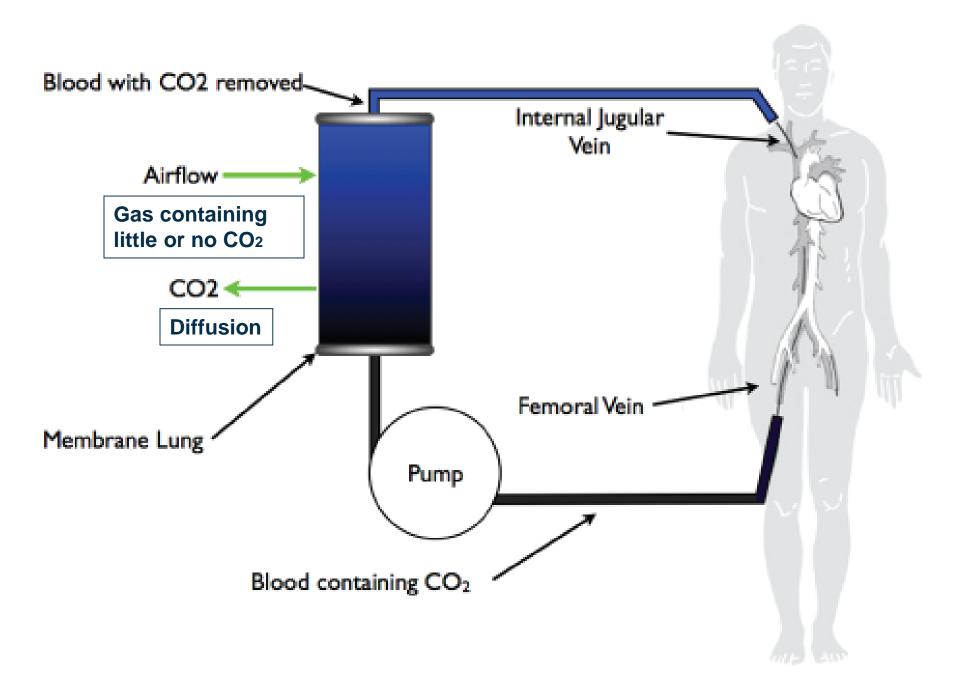
Transition to IMV (personal experience, 2011-2014)

Number of subjects	62		
Age (mean ± SD) , yrs	65.4±19.3		
Gender (males, females)	26, 36		
Ineffective NIV, n (%)	52 (83.8)		
Severe hypercaphia	25 (42.4)		
Severe hypoxemia	21 (35.6)		
Dependence on NIV, n (%)	8 (13.3)		
NIV complication, n (%)	2 (3.4)		
Tracheotomy, n (%)	16 (28.8)		
Outcome , n (%)			
Died during hosp	41 (66.1)		
Discharged from hosp	21 (33.9)		

Remarks

- Mortality rate among patients transitioned to IMV is very high;
- The outcome of patients with ILD and COPD is extremely poor.

Should IPF/COPD patients be excluded from IMV after failing a NIV trial?


NIV reasons for failure

	ACPE	COPD	Non COPD	ALI/ARDS
Hypoxemia	+	+		+++
Hypercapnia	+	++	+	
Leak/Mask intol	+	+	++	++
Secretion		+	+	+
Mentation	+	+	+	+
Agitation		+		++
Progression			+	+++
Failure Rate	18%	24%	37%	60%

Schettino G. Crit Care Med 2008; 36:441-7

A requirement to effectively counteract hypercapnia!

The membrane lung

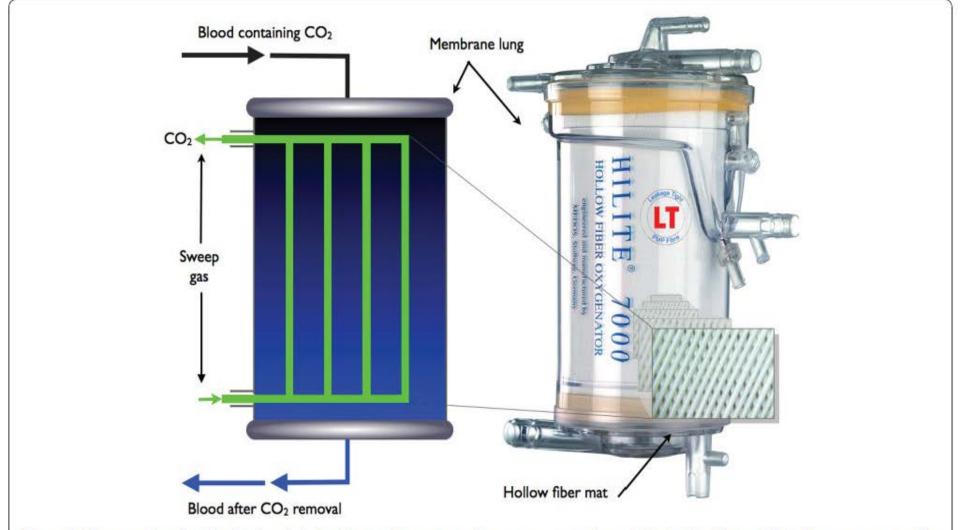
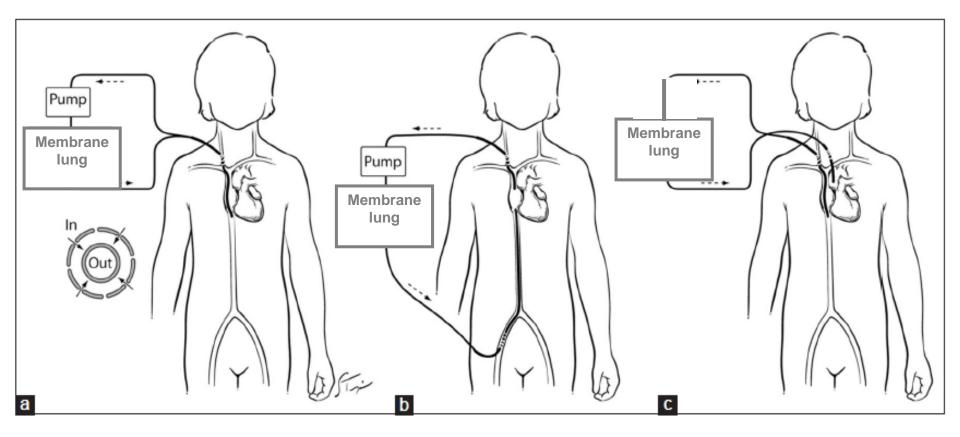
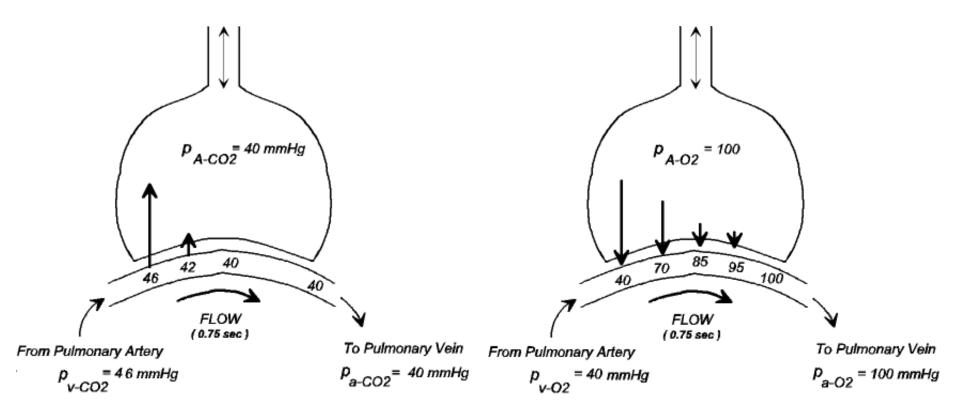




Figure 2. Diagram showing the basic principle of a membrane lung. Sweep gas passes through the hollow fibres. Hollow fibers are arranged in a complex mat. Image courtesy of Medos Medizintechnik AG (Stolberg, Germany).

The pump

Three configurations of extracorporeal blood flow (a) single-site double lumen veno-venous (VV), (b) two-site VV, and (c) arterio-venous

Greater diffusibility of CO₂ compared to O₂ across extracorporeal membranes because of higher solubility.

Steep slope in the CO₂ dissociation curve in the physiologic range of dissolved CO₂

Potential application of ECCO₂R technology

• ECCO₂R for patients on IMV:

- to enable lung protective ventilation
- to treat refractory hypercapnic RF
- to support weaning and facilitate extubation

• ECCO₂R for patients on NIV:

- to avoid endotracheal intubation

Clinical use of ECCO₂R in patients on NIV

- Chronic Obstructive Pulmonary Disease
- A bridge to Lung Transplant
- Other conditions

ECCO₂R in COPD patients with hypercapnic ARF

Study details	N. of patients	Key efficacy findings	Key safety findings	Comments
Crotti (2012) 21	1	Avoidance of ETI	-	V-V system
Kluge (2012) ¹²	21	Success rate: 90% (19/21)	2 major and 7 minor bleeding complications; 1 pseudoaneurysm; 1 heparin-induced thrombocytopenia	A-V system
Brederlau (2012) ²²	3	Success rate: 66% (2/3)	-	A-V system cause of failure: NP
Burki (2013) 23	9	Success rate: 89% (8/9)	-	V-V system cause of failure: worsening RF
Mani (2013) 24	2	suCcess rate: 100% (2/2)	No complications	V-V system
Bonin (2013) 25	1	Avoidance of ETI	Bleeding	V-V system
Del Sorbo (2015) ²⁶	25	ETI rate: 12%	13 patients (52%) experiencing adverse events (3 major and 1 minor bleedings, 9 technical drawbacks)	V-V system Historical controls; Risk of ETI 3 times higher in patients treated with <i>NIV</i> only

ARF: acute respiratory failure; COPD: chronic obstructive pulmonary disease; NIV: non-invasive ventilation; NP: nosocomial pneumonia; RF: respiratory failure.

Vianello et al, Minerva Pneumol 2015

Extracorporeal Co₂ Removal in Hypercaphic Patients At Risk of Noninvasive Ventilation Failure: A Matched Cohort Study With Historical Control*

Lorenzo Del Sorbo, MD¹; Lara Pisani, MD²; Claudia Filippini, PhD¹; Vito Fanelli, MD¹; Luca Fasano, MD²; Pierpaolo Terragni, MD¹; Andrea Dell'Amore, MD³; Rosario Urbino, MD¹; Luciana Mascia, MD, PhD¹; Andrea Evangelista, MD⁴; Camillo Antro, MD⁵; Raffaele D'Amato, MD¹; Maria José Sucre, MD¹; Umberto Simonetti, MD¹; Pietro Persico, MD¹; Stefano Nava, MD²; V. Marco Ranieri, MD¹

Objectives: To assess efficacy and safety of NIV plus ECCO₂R in comparison to NIV-only to prevent ETI in patients with exacerbated AECOPD **Design:** Matched cohort study with historical control. *Methods*: Primary endpoint: cumulative prevalence of ETI. 25 pts included in the study group. 21 patients selected for the control group **Results:** Risk of being intubated 3 times higher in patients treated with NIV-only (hazard ratio, 0.27). Intubation rate in NIVplus- ECCO₂R 12% and in NIV-only 33% (not statistically different).

CCM, 2015

Extracorporeal Co₂ Removal in Hypercaphic Patients At Risk of Noninvasive Ventilation Failure: A Matched Cohort Study With Historical Control*

Lorenzo Del Sorbo, MD¹; Lara Pisani, MD²; Claudia Filippini, PhD¹; Vito Fanelli, MD¹; Luca Fasano, MD²; Pierpaolo Terragni, MD¹; Andrea Dell'Amore, MD³; Rosario Urbino, MD¹; Luciana Mascia, MD, PhD¹; Andrea Evangelista, MD⁴; Camillo Antro, MD⁵; Raffaele D'Amato, MD¹; Maria José Sucre, MD¹; Umberto Simonetti, MD¹; Pietro Persico, MD¹; Stefano Nava, MD²; V. Marco Ranieri, MD¹

Limitations of the study:

- High number of pts who refused to give consent to "NIV-plus-ECCO₂R" \rightarrow lack of clinical equipoise;
- Non-randomized design of the study;
- Decision to use ECCO₂R made in an unblinded manner;
- Patients not representative of those commonly admitted to the ICU for treatment with NIV.

Extracorporeal Co₂ Removal in Hypercaphic Patients At Risk of Noninvasive Ventilation Failure: A Matched Cohort Study With Historical Control*

Lorenzo Del Sorbo, MD¹; Lara Pisani, MD²; Claudia Filippini, PhD¹; Vito Fanelli, MD¹; Luca Fasano, MD²; Pierpaolo Terragni, MD¹; Andrea Dell'Amore, MD³; Rosario Urbino, MD¹; Luciana Mascia, MD, PhD¹; Andrea Evangelista, MD⁴; Camillo Antro, MD⁵; Raffaele D'Amato, MD¹; Maria José Sucre, MD¹; Umberto Simonetti, MD¹; Pietro Persico, MD¹; Stefano Nava, MD²; V. Marco Ranieri, MD¹

<u>Conclusions</u>: data provide the rationale for future RCT that are required to validate $ECCO_2R$ in patients with hypercapnic respiratory failure nonresponsive to NIV.

Removing extra CO₂ in AECOPD patients

- Reported studies are limited in size;
- Insufficient information regarding when ECCO₂R should ideally be implemented;
- However, the ability to increase avoidance of IMV and trends in reduced hospital LOS → need for prospective, randomized, controlled studies.

Lund, Curr Respir Care Rep 2012

A bridge to Lung Transplant

Undergoing IMV before LT is an independent predictor of a longer time on MV and in the ICU during the post-transplantation period;

 \rightarrow Growing interest in the use of ECCO₂R as a bridge to LT for patients with severe, hypercapnic RF in the attempt to avoid or limit IMV.

ECCO₂R in patients on waiting list for LT

Study details	N° of patients	Bridged to LT	Comments
Fisher, 2006	12	10	A-V system (8 still alive at the 1yr follow-up)
Ricci, 2010	12	3	Mean time on ECCO ₂ R: 13.5 days 8 died on the device, 1 recovered
Bartosik, 2011	2	1	1 recovered
Schellongowski, 2014	20	19	2 systems (A-V and V-V) (4 switched to ECMO) Complications in 6 pts

Removing extra CO₂ in patients on Waiting List

Bridging to LT with $ECCO_2R$ is feasible and associated with high successful transplantation and survival rates.

Sporadic case reports on the utilization of ECCO₂R

- Near-fatal pediatric and adult asthma (Conrad 2007, Elliot 2007, Jung 2011)
- Intracranial bleeding (Mallick 2007)
- Influenza infection (Twigg 2008)
- Chest/abdominal/head trauma (McKinlay 2008)
- Bronchopleural fistulae (Bombino 2011)
- Acute exacerbation of IPF (Vianello 2016)

Conclusions

- The boundaries for the use of NIV continue to expand; however, the risk of NIV failure is still present;
- Transitioning to IMV after NIV failure may not be in the interest of some categories of patients, including those with AECOPD;
- The future management of patients with COPD will routinely include "respiratory dyalisis": only a fascinating hypothesis?