

Acute Exacerbation of IPF Pathogenesis and Clinical Approach

Harold R Collard, MD

Director, ILD Program

University of California San Francisco

Disclosures

- I have financial relationships with the following organizations:
 - Research Grants and Contracts: Boehringer Ingelheim, NIH/NHLBI, UCSF

- Consulting:

AstraZeneca/Medimmune, Bayer, Biogen, FibroGen, Five Prime, Genentech/InterMune, Genoa, Gilead, Mesoblast, Moerae Matrix, Patients Like Me, Pfizer, Promedior, Prometic, Pulmonary Fibrosis Foundation

Prologue

Interstitial Lung Disease

Idiopathic pulmonary fibrosis (IPF)

 Idiopathic pulmonary fibrosis is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause, occurring primarily in older adults, limited to the lungs, and associated with the histopathologic and/or radiologic pattern of usual interstitial pneumonia (UIP).

UIP pattern on HRCT

Ja.

関連たち B

Sub-pleural, basal distribution; honeycombing; no atypical features

UIP pattern on lung biopsy

Honeycombing (not shown), peripheral fibrosis; normal lung; fibroplasia; no atypical features

Part 1: Definitions and Epidemiology

IPF Natural History

Ley et al. AJRCCM 2011;183:431

Song et al. Eur Resp J 2011;37:356

Acute Exacerbation (AEX)

 Acute exacerbation (AEX) = idiopathic acute respiratory worsening of IPF

AEX: annual incidence

Randomized controlled trials

Proportion of IPF patients with AE-IPF

Ryerson, Cottin, Brown, Collard (unpublished)

AEX: annual incidence

Proportion of IPF patients with AE-IPF

Ryerson, Cottin, Brown, Collard (unpublished)

Risk factors for Acute Exacerbation

Specific risk factors:

• Disease severity is associated with risk

Collard Resp Res 2013;14:73 and Song Eur Resp J 2011;37:356

Short-term mortality is high

Collard Resp Res 2013;14:73 and Song Eur Resp J 2011;37:356

Part 2: Pathogenesis

AEX Histopathology = DAD

What causes DAD in IPF?

Some potential triggers

- Viral infection
- Surgical procedure
- Microaspiration
- Ambient pollution

Trigger = respiratory viral infection

• A common respiratory virus was detected by deep sequencing in 9% of acute exacerbation BAL samples

Virus	Acute Exacerbation n = 43	Stable IPF n = 40	P value
Rhinovirus	2 (5%)	0 (0%)	0.49
Coronavirus	1 (2%)	0 (0%)	1.0
Parainfluenza	1 (2%)	0 (0%)	1.0
Adenovirus	0 (0%)	0 (0%)	
Enterovirus	0 (0%)	0 (0%)	
Influenza	0 (0%)	0 (0%)	
Metapneumovirus	0 (0%)	0 (0%)	
RSV	0 (0%)	0 (0%)	

Wootton AJRCCM 2011;183:1698

Trigger = surgical procedure

• A small percentage of patients undergoing lung surgery appear to develop acute exacerbation post-operatively.

Study	Total IPF	AEX (%)	Comments
Kondoh et al. Resp Med 2006;10:1753	80	3 (4)	Exacerbation most pronounced in contralateral lung
Park et al. Eur J Cardiothorac Surg 2007;31:1115	140	2 (1)	More common was pre-existing acute exacerbation (i.e. seen on biopsy)

Trigger = microaspiration

 Eight of 24 (33%) patients with acute exacerbation had elevated pepsin levels in their BAL compared to stable IPF patients

Trigger = microaspiration

 Patients on PPI or H2B therapy had fewer acute exacerbations

Trigger = ambient pollution

 Recent ozone and nitrogen dioxide (NO2) exposure was associated with an increased risk of acute exacerbation

What causes DAD in IPF?

Part 3: Clinical Approach

AEX: Diagnostic Criteria

Must have all four:

- Unexplained worsening of dyspnea over < 30 days
- •New bilateral ground glass or consolidation on HRCT
- •No evidence of pulmonary infection by ET aspirate/BAL
- •Exclusion of other known causes of acute worsening

AEX: Diagnostic Criteria

Must have all four:

 Unexplained worsening of dyspnea over < 30 days

•New bilateral ground glass or consolidation on HRCT

•No evidence of pulmonary infection by ET aspirate/BAL

•Exclusion of other known causes of acute worsening

STEP-IPF trial: Acute worsenings

Collard Resp Res 2013;14:73

STEP-IPF trial: Suspected AEX

Case	Unexplained acute worsening	HRCT with bilateral GGO	No infection by microbiology	Other causes excluded
Suspected 1	ОК	ОК	Not performed	ОК
Suspected 2	ОК	ОК	Not performed	ОК
Suspected 3	ОК	ОК	Not performed	ОК
Suspected 4	ОК	ОК	Not performed	ОК
Suspected 5	ОК	No GGO	ОК	ОК
Suspected 6	ОК	Not performed	ОК	ОК
Suspected 7	ОК	Not performed	ОК	ОК
Suspected 8	ОК	Not performed	ОК	ОК
Suspected 9	ОК	Not performed	Not performed	ОК
Suspected 10	ОК	Not performed	Not performed	ОК
Suspected 11	ОК	Not performed	Not performed	ОК
Suspected 12	ОК	Not performed	Not performed	ОК
Suspected 13	ОК	Not performed	Not performed	ОК
Suspected 14	ОК	Not performed	Not performed	ОК

Collard Resp Res 2013;14:73

AEX: Management (1)

- Corticosteroids
 - "The majority of patients with acute exacerbation of IPF should be treated with corticosteroids."
 - High value placed on anecdotal reports and the high mortality of acute exacerbation
 - No recommended dose or duration
- Other approaches: cyclosporine A, heparin, polymixin B column filtration
- Mechanical ventilation

AEX: Management (2)

- Supportive care is the mainstay
- Prevention?
 - Vaccination for influenza and pneumococcus
 - Avoidance of sick contacts
 - Avoidance of unnecessary surgery/mechanical ventilation
 - Treatment of comorbidities (GERD, OSA)
 - Treatment of IPF

Epilogue

Rethinking acute exacerbation

- I believe many (if not) all acute exacerbations are triggered by some secondary process.
 - Early studies support this hypothesis
 - Outcomes data suggests that acute worsenings of known and unknown cause have similar disease behavior
 - It simplifies the pathobiological construct
- The central pathobiological observation in acute exacerbation is the presence of DAD.

Rethinking acute exacerbation

• Based on this, I believe that the current definition for acute exacerbation needs revision.

Rethinking acute exacerbations

 Current AEX definition: <u>Idiopathic</u> acute respiratory worsening of IPF

 Proposed AEX definition: Acute respiratory worsening of IPF <u>resulting in the presence of</u> <u>diffuse alveolar damage</u>

As proposed, pathobiology, not etiology, would define AEX

Ryerson Curr Opin Resp Med 2014;20:436

Rethinking acute exacerbations

Ryerson, Cottin, Brown, Collard (unpublished)

Summary

- Acute exacerbations (AEXs) are defined as idiopathic acute respiratory worsenings of IPF
- AEXs are infrequent but important clinical events with high short-term mortality
- AEXs are characterized by the presence of diffuse alveolar damage (DAD)
- The management of AEX is primarily supportive, but corticosteroids are recommended in the majority of cases

Acute Exacerbation of IPF Pathogenesis and Clinical Approach

Harold R Collard, MD

Director, ILD Program

University of California San Francisco

