## Screening of PAH in systemic sclerosis and in *BMPR2* mutation carriers

#### Marc HUMBERT, MD, PhD

Centre National de Référence de l'Hypertension Pulmonaire Hôpital de Bicêtre, Assistance Publique – Hôpitaux de Paris Université Paris-Sud, INSERM U999 Le Kremlin-Bicêtre France









European Reference Network







## **Disclosures – Marc Humbert, MD, PhD**

- Relevant financial relationships with a commercial interest:
  - Actelion/J&J: consultancy (current), board or advisory committee (current), speaker (current)
  - **Bayer/Merck:** consultancy (current), board or advisory committee (current), speaker (current)
  - GSK: consultancy (current), board or advisory committee (current), speaker (current), research support (current)
  - **United Therapeutics**: consultancy (current), board or advisory committee (current)



## CLINICAL CLASSIFICATION OF PH

| 1. Pulmonary Arterial Hypertension                                                                                                                                                                                                                                                                            | 3. PH due to lung diseases and/or hypoxia                                                                                                                                                                                                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>1.1 Idiopathic PAH</li> <li>1.2 Heritable PAH</li> <li>1.3 Drugs and toxins induced</li> <li>1.4 Associated with: <ul> <li>1.5.1 Connective tissue disease</li> <li>1.5.2 HIV infection</li> </ul> </li> </ul>                                                                                       | <ul> <li>3.1 Obstructive lung disease</li> <li>3.2 Restrictive lung disease</li> <li>3.3 Other lung disease with mixed restrictive/obstructive pattern</li> <li>3.4 Hypoxia without lung disease</li> <li>3.5 Developmental lung disorders (Table P3)</li> </ul> |  |
| <ul> <li>1.5.3 Portal hypertension</li> <li>1.5.4 Congenital heart disease</li> <li>1.5.5 Schistosomiasis</li> <li>1.5 PAH long-term responders to CCB)</li> <li>1.6 PAH with overt signs of venous/capillaries</li> <li>(PVOD/PCH) involvement</li> <li>1.7 Persistent PH of the Newborn syndrome</li> </ul> | 4. PH due to pulmonary artery obstruction                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                               | <ul><li>4.1 Chronic thromboembolic PH</li><li>4.2 Other pulmonary artery obstructions</li></ul>                                                                                                                                                                  |  |
| 5. PH with unclear mechanisms                                                                                                                                                                                                                                                                                 | 5. PH with unclear mechanisms                                                                                                                                                                                                                                    |  |
| <ul> <li>5.1 Haematologic disorders</li> <li>5.2 Systemic disorders</li> <li>5.3 Others</li> <li>5.4 Complex congenital heart disease</li> </ul>                                                                                                                                                              | <ul> <li>5.1 Haematologic disorders</li> <li>5.2 Systemic disorders</li> <li>5.3 Others</li> <li>5.4 Complex congenital heart disease (Table P4)</li> </ul>                                                                                                      |  |

## THE FRENCH PAH REGISTRY

- National registry: 674 patients, 17 medical centres (respiratory medicine, cardiology and internal medicine) spread across France
- Adult patients (>18 years) suffering from PAH (idiopathic, familial or associated conditions)
- Prospective cohort monitored and on-site audits







Hôpitaux universitaires Paris-Sud Antoine-Béctere Biottre Paul-Brousse

2 RISK FACTORS 4%

Humbert M, et al. Am J Respir Crit Care Med 2006

## NYHA FUNCTIONAL CLASSES AT DIAGNOSIS

#### $\rightarrow$ Delay between onset of symptoms and diagnosis: 27 months





#### **1. Pulmonary Arterial Hypertension**

1.1 Idiopathic PAH

1.2 Heritable PAH

1.3 Drugs and toxins induced

1.4 Associated with:

1.5.1 Connective tissue disease

1.5.2 HIV infection

- 1.5.3 Portal hypertension
- 1.5.4 Congenital heart disease
- 1.5.5 Schistosomiasis
- 1.5 PAH long-term responders to CCB)
- 1.6 PAH with overt signs of venous/capillaries (PVOD/PCH) involvement

1.7 Persistent PH of the Newborn syndrome

#### 5. PH with unclear mechanisms

- 5.1 Haematologic disorders
- 5.2 Systemic disorders

5.3 Others

5.4 Complex congenital heart disease









## PREVALENCE OF PAH IN SSc

| Reference                  | Methodology                                | Patients<br>(N) | SSc<br>profile                            | PAH definition                                                                                                                               | PAH<br>prevalence |
|----------------------------|--------------------------------------------|-----------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Ungerer 1983<br>USA        | Prospective<br>Monocentric<br>1973 to 1979 | 49              | Proximal SSc<br>and CREST                 | Mean PAP ≥ 20 mmHg and mean<br>PCWP ≤ 12 mmHg<br>(right heart catheterization)                                                               | 16%               |
| Murata<br>1992<br>Japan    | Prospective<br>Monocentric<br>1988 to 1991 | 71              | SSc and<br>MCTD                           | V <sub>IT</sub> ≥ 2.5 m/s<br>Doppler Echo                                                                                                    | 17%               |
| Battle<br>1996<br>USA      | Prospective<br>Monocentric                 | 34              | Diffuse or<br>limited c SSc               | sPAP <u>&gt;</u> 30 mmHg<br>Doppler Echo                                                                                                     | 35%               |
| Koh<br>1996<br>Canada      | Prospective<br>Monocentric<br>1978 to 1994 | 344             | Diffuse or<br>limited<br>cutaneous<br>SSc | RHC: PAPm ≥ 25 and<br>PCWP ≤ 12 mmHg , OR<br>Echo: PsVD > 35 mmHg or RV<br>dilatation, P or T insufficiency, or<br>paradoxical septum motion | 4.9%              |
| MacGregor<br>2001<br>UK    | Prospective<br>Monocentric<br>1992 to 1997 | 152             | Diffuse or<br>limited c SSc               | PAPs > 30 mmHg<br>Doppler Echo                                                                                                               | 13%               |
| Mukerjee<br>2003<br>UK     | Prospective<br>Monocentric<br>1998 to 2002 | 722             | Diffuse or<br>limited c SSc               | RHC: mPAP > 25 mmHg at rest or ><br>30 on exercise, PCWP < 15 mmHg                                                                           | 12 %              |
| Hachulla<br>2005<br>France | Prospective<br>Multicentric<br>2002-3      | 599             | Diffuse or<br>limited c SSc               | RHC: mPAP > 25 mmHg at rest or ><br>30 on exercise, PCWP < 15 mmHg                                                                           | 7.85%             |



## SSc LUNG INVOLVEMENT IS THE FIRST CAUSE OF DEATH





## SSc LUNG INVOLVEMENT IS THE FIRST CAUSE OF DEATH



Time from diagnosis of PAH (years)



# When possible, a PAH screening programme may allow early intervention and improve outcomes



Braunwald E, et al., eds. Harrison's Principles of Internal Medicine. New York: McGraw-Hill; 2001:1506



- Echocardiography remains central to pulmonary hypertension detection (ItinérAIR study)
- The DETECT study and derived algorithm have been developed to better screen for PAH in SSc (> 3-year duration & DLCO<60%)</li>
- Using DETECT approach, screening of patients with the SSc spectrum of diseases without clinical signs and symptoms of PH would include a 2-step approach:
  - Clinical assessment for the presence of telangiectasia, anti-centromere antibodies, PFT and DLCO measurements, electrocardiogram and biomarkers (NT-proBNP and uric acid)
  - Echocardiography and consideration of RHC in patients with abnormal findings, although there is a lack of data with DLCO > 60%



## Early detection of PAH in SSc

SSc patients with no severe pulmonary function abnormalities





Hachulla E, et al. Arthritis Rheum 2005

## Risk factors for death and the 3-year survival of patients with systemic sclerosis: the French ItinérAIR-Sclérodermie study

Eric Hachulla<sup>1</sup>, Patrick Carpentier<sup>2</sup>, Virginie Gressin<sup>3</sup>, Elisabeth Diot<sup>4</sup>, Yannick Allanore<sup>5</sup>, Jean Sibilia<sup>6</sup>, David Launay<sup>1</sup>, Luc Mouthon<sup>7</sup>, Patrick Jego<sup>8</sup>, Jean Cabane<sup>9</sup>, Pascal de Groote<sup>10</sup>, Amélie Chabrol<sup>11</sup>, Isabelle Lazareth<sup>12</sup>, Loïc Guillevin<sup>7</sup>, Pierre Clerson<sup>13</sup>, Marc Humbert<sup>14</sup> and the ItinérAIR-Sclérodermie Study Investigators





Hachulla E, et al. Arthritis Rheum 2009

## The value of early detection: "Routine practice" and "detected" PAH-SSc patients





## FC at PAH-SSc diagnosis: "Routine practice" and "detected" patients

Routine practice (*n* = 16)





*p* = 0.036; routine versus detected patients



## FC at PAH-SSc diagnosis: "Routine practice" and "detected" patients

|                                       | Routine practice<br>( <i>n</i> = 16) | Screened<br>( <i>n</i> = 16) | р        |
|---------------------------------------|--------------------------------------|------------------------------|----------|
| RAP (mmHg)                            | 10 ± 5                               | 6 ± 3                        | 0.020    |
| mPAP (mmHg)                           | 49 ± 11                              | 34 ± 10                      | 0.0004   |
| mPAWP (mmHg)                          | 9 ± 4                                | 10 ± 3                       | 0.28     |
| Cardiac output (I/min)                | 3.59 ± 1.10                          | 5.96 ± 1.51                  | < 0.0001 |
| Cardiac index (l/min/m <sup>2</sup> ) | $2.37 \pm 0.81$                      | $3.42 \pm 0.92$              | 0.0028   |
| PVRi (dynes·s·cm⁻⁵.m²)                | $1500 \pm 602$                       | 613 ± 400                    | < 0.0001 |

mPAWP = mean pulmonary artery wedge pressure PVRi = pulmonary vascular resistance indexed



## PAH therapies prescribed at PAH-SSc diagnosis: "Routine practice" and "detected" patients

|                                                                                                       | Routine practice | Detected         | р      |
|-------------------------------------------------------------------------------------------------------|------------------|------------------|--------|
|                                                                                                       | ( <i>n</i> = 16) | ( <i>n</i> = 16) |        |
| Conventional therapy                                                                                  |                  |                  |        |
| Warfarin <i>, n</i> (%)                                                                               | 12 (75)          | 4 (25)           | 0.005  |
| Diuretics, n (%)                                                                                      | 13 (81)          | 3 (19)           | 0.0004 |
| Digoxin <i>, n</i> (%)                                                                                | 1 (6)            | 0 (0)            | 1      |
| Oxygen <i>, n</i> (%)                                                                                 | 2 (12.5)         | 4 (25)           | 0.65   |
| ССВ, п (%)                                                                                            | 2 (12.5)         | 2 (12.5)         | 1      |
| PAH-specific therapy                                                                                  |                  |                  |        |
| ERA <i>, n</i> (%)                                                                                    | 13 (81)          | 13 (81)          | 1      |
| PDE-5i <i>, n</i> (%)                                                                                 | 6 (37.5)         | 3 (19)           | 0.43   |
| Prostacyclin <i>, n</i> (%)                                                                           | 2 (12.5)         | 2 (12.5)         | 1      |
| None <i>, n</i> (%)                                                                                   | 2 (12.5)         | 3 (18)           | 1      |
| Combination therapy, <i>n</i> (%)                                                                     | 6 (37.5)         | 4 (25)           | 1      |
| Time from PAH-SSc diagnosis to<br>initiation of PAH therapy (months),<br>median (interquartile range) | 0 (3)            | 1 (5)            | 0.23   |



#### Screening for Pulmonary Arterial Hypertension in Patients With Systemic Sclerosis

Clinical Characteristics at Diagnosis and Long-Term Survival

Marc Humbert,<sup>1</sup> Azzedine Yaici,<sup>1</sup> Pascal de Groote,<sup>2</sup> David Montani,<sup>1</sup> Olivier Sitbon,<sup>1</sup> David Launay,<sup>3</sup> Virginie Gressin,<sup>4</sup> Loïc Guillevin,<sup>5</sup> Pierre Clerson,<sup>6</sup> Gérald Simonneau,<sup>1</sup> and Eric Hachulla<sup>3</sup>





Humbert M, et al. Arthritis Rheum 2011

## Limitations

- Over-diagnosis
- Non-randomised, open-label, pragmatic study
- Length-time bias
- Lead-time bias



#### Web Table X Recommendations for pulmonary arterial hypertension screening

| Recommendations                                                                                                                                                         | Classa | Level <sup>b</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|
| Resting echocardiography is recommended as a screening test in asymptomatic patients with systemic sclerosis.                                                           | 1      | В                  |
| A combined approach (including biomarkers, PFTs and echocardiography) should be considered to predict PH in<br>systemic sclerosis.                                      | lla    | В                  |
| Systemic sclerosis patients with a mean PAP ranging from 21 to 24 mmHg should be closely monitored, because<br>of a higher risk of PAH.                                 | lla    | в                  |
| Initial screening using the stepwise DETECT algorithm may be considered in adult systemic sclerosis patients with >3 years' disease duration and a DLCO <60% predicted. | llb    | В                  |
| Annual screening with echocardiography, PFTs and biomarkers may be considered in patients with systemic<br>sclerosis.                                                   | llb    | В                  |



Galiè et al. Eur Respir J 2015

## **CLINICAL CLASSIFICATION OF PH**

#### **1. Pulmonary Arterial Hypertension**

#### 1.1 Idiopathic PAH

1.2 Heritable PAH

1.3 Drugs and toxins induced

1.4 Associated with:

- 1.5.1 Connective tissue disease
- 1.5.2 HIV infection
- 1.5.3 Portal hypertension
- 1.5.4 Congenital heart disease
- 1.5.5 Schistosomiasis
- 1.5 PAH long-term responders to CCB)
- 1.6 PAH with overt signs of venous/capillaries (PVOD/PCH) involvement
- 1.7 Persistent PH of the Newborn syndrome

#### 5. PH with unclear mechanisms

- 5.1 Haematologic disorders
- 5.2 Systemic disorders

5.3 Others

5.4 Complex congenital heart disease

1<sup>st</sup> familial cases of PAH reported in 1954





Fig. 3—Chest x-rays of three members of the same family showing prominent pulmonary artery segments, prominent hilar vessels and normal or decreased pulmonary vascular markings.

Dresdale DT. Bull NY Acad Med 1954



## **HERITABLE PAH**

#### **1. Pulmonary Arterial Hypertension**

#### 1.1 Idiopathic PAH

1.2 Heritable PAH

1.3 Drugs and toxins induced

1.4 Associated with:

- 1.5.1 Connective tissue disease
- 1.5.2 HIV infection
- 1.5.3 Portal hypertension
- 1.5.4 Congenital heart disease
- 1.5.5 Schistosomiasis
- 1.5 PAH long-term responders to CCB)
- 1.6 PAH with overt signs of venous/capillaries (PVOD/PCH) involvement

1.7 Persistent PH of the Newborn syndrome

#### 5. PH with unclear mechanisms

- 5.1 Haematologic disorders
- 5.2 Systemic disorders

5.3 Others

5.4 Complex congenital heart disease





## **HERITABLE PAH**

#### **1. Pulmonary Arterial Hypertension**

#### 1.1 Idiopathic PAH

1.2 Heritable PAH

1.3 Drugs and toxins induced

1.4 Associated with:

- 1.5.1 Connective tissue disease
- 1.5.2 HIV infection
- 1.5.3 Portal hypertension
- 1.5.4 Congenital heart disease
- 1.5.5 Schistosomiasis
- 1.5 PAH long-term responders to CCB)
- 1.6 PAH with overt signs of venous/capillaries (PVOD/PCH) involvement

1.7 Persistent PH of the Newborn syndrome

#### 5. PH with unclear mechanisms

- 5.1 Haematologic disorders
- 5.2 Systemic disorders

5.3 Others

5.4 Complex congenital heart disease



#### **TASKFORCE 2: Genetics & Genomics**

#### Higher level of evidence

BMPR2 EIF2AK4; TBX4; ATP13A3; GDF2; SOX17; AQP1; ACVRL1; SMAD9; ENG; KCNK3; CAV1

#### Lower

SMAD4; SMAD1; KLF2; BMPR1B; KCNA5



## *BMPR2* mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis

Jonathan D W Evans, Barbara Girerd, David Montani, Xiao-Jian Wang, Nazzareno Galiè, Eric D Austin, Greg Elliott, Koichiro Asano, Ekkehard Grünig, Yi Yan, Zhi-Cheng Jing, Alessandra Manes, Massimiliano Palazzini, Lisa A Wheeler, Ikue Nakayama, Toru Satoh, Christina Eichstaedt, Katrin Hinderhofer, Matthias Wolf, Erika B Rosenzweig, Wendy K Chung, Florent Soubrier, Gérald Simonneau, Olivier Sitbon, Stefan Gräf, Stephen Kaptoge, Emanuele Di Angelantonio\*, Marc Humbert\*, Nicholas W Morrell\*



### **Transplant-free Survival**



Evans JDW, Lancet Respir Med 2016



## **6th World Symposium on PH**

Genetic education and counselling should be performed prior to genetic testing for PAH to address the complex issues of incomplete penetrance, questions of surveillance for genetically at-risk family members, reproductive questions, concerns about genetic discrimination, as well as psychosocial issues of guilt and blame that can accompany genetically based diseases.

In France, genetic testing for PAH:

- is restricted to adults (>18 y-o) in asymptomatic relatives of PAH patients
- can be proposed in children with unexplained symptom that could be related to PAH





## **PAH SCREENING**

## **Recommendations in mutation carriers**

## 2015 ESC/ERS Guidelines

| Recommendations                                                                                                                                                   | Classa | Level <sup>b</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|
| Resting echocardiography is recommended as a screening test in <i>BMPR2</i> mutation carriers or first-degree relatives of patients with HPAH                     | I      | С                  |
| In individuals who test positive for PAH-causing mutations and first-degree relatives of HPAH cases may be considered to have an annual screening echocardiogram. | llb    | С                  |
| Exercise echocardiography is not recommended to predict PH in high risk population.                                                                               | Ш      | С                  |



Recommendations

- Genetic counselling of all idiopathic, anorexiant and familial PAH patients and first-generation asymptomatic family members of patients with known genetic mutations.
- Subsequent evaluations for PAH should be offered (*e.g.* CPET and TTE), in mutation-positive individuals.



# French National Program for PAH screening in asymptomatic *BMPR2* mutation carriers

















|                             | No PAH<br>(n=53)   | Patient 1 | Patient 2 |
|-----------------------------|--------------------|-----------|-----------|
| Age, years                  | 37.1 (18 – 67.5)   | 25.5      | 78.1      |
| Sex ratio, M/F              | 26/27              | F         | F         |
| Tobacco exposure >5p.y      | 28 (52%)           | Yes       | No        |
| BMI                         | 22.5 (16.8 – 32.2) | 22.0      | 25.2      |
| Arterial hypertension, n(%) | 10 (19%)           | No        | Yes       |
| Diabetes, n(%)              | 3 (6%)             | No        | Yes       |
| Dyslipidemia, n(%)          | 3 (6%)             | No        | No        |

## Patient 1

|                                                    | At Screening |
|----------------------------------------------------|--------------|
| NYHA FC                                            | I            |
| 6-MWD, m                                           | 533          |
| mPAP, mmHg                                         | 26           |
| PcwP, mmHg                                         | 8            |
| Cardiac output, L.min <sup>-1</sup>                | 7.27         |
| Cardiac index, L.min <sup>-1</sup> .m <sup>2</sup> | 4.38         |
| PVR, WU                                            | 2.5          |
| BNP, (normal < 80)                                 | 9            |
| PAH therapy                                        | -            |

Female 25 year-old 3 months **post-partum** 

- TTE: TRV 2 m/s TAPSE 25 mm considered as « normal »
- <u>CPET</u>: VO2 sp 72% theo VD/VT normal PaO2 at exercise normal

**<u>BNP</u>** : normal

Genetic counseling should be proposed to all first degree relatives of patients with heritable PAH due to BMPR2 mutations to identify asymptomatic mutation carriers at risk to develop PAH

> No preventive therapy but **potential benefits**:

- Reproductive informations and options (adoption, donor gametes, pre-implantation diagnosis)
- Early diagnosis
- > ESC/ERS guidelines recommended annual echocardiogram based on experts consensus
- Preliminary data from DELPHI2 program suggest that non single invasive exams may be unable to screen PAH in asymptomatic patients
  - $\Rightarrow$  Further analysis may bring additional informations.
- Another strategy could be to identify a subgroup with high penetrance (female, post-partum, mutation type, biomarkers....) and to propose right heart catheterization for this high-risk population.



## ACKNOWLEDGEMENTS

#### **Pneumologie Bicêtre**

David Montani Principal investigator Marc Humbert Scientific coordinator Barbara Girerd Genetic counselor

Gérald Simonneau Olivier Sitbon Xavier Jaïs Laurent Savale Philippe Hervé Sven Günther Laurent Godinas Florence Parent

#### **Physiologie Bicêtre**

Gilles Garcia Pierantonio Laveneziana

#### **Cardiologie Bicêtre - HML**

Amir Bouchachi Sébastien Hascoët

#### **Génétique Pitiè-Salpétrière**

Florent Soubrier Mélanie Eyries

#### **INSERM U999**

Christophe Guignabert Ly Tu

#### **French PH Network**



#### **Association HTaP France**



