

Cancer Institute

Network
 Respiratory Diseases
 (ERN-LUNG)

Screening for Mesothelioma

R.Cornelissen, MD, PhD

Pulmonologist Erasmus MC, Rotterdam, The Netherlands

Pulmonary rare diseases and orphan drugs, Milan, March 1st

Disclosures

- Consultancy Roche, Boehringer Ingelheim, BMS, MSD
- Speakers fee Roche, Pfizer, Boehringer Ingelheim, Novartis, BMS

None relevant for this presentation

Screening for malignancies

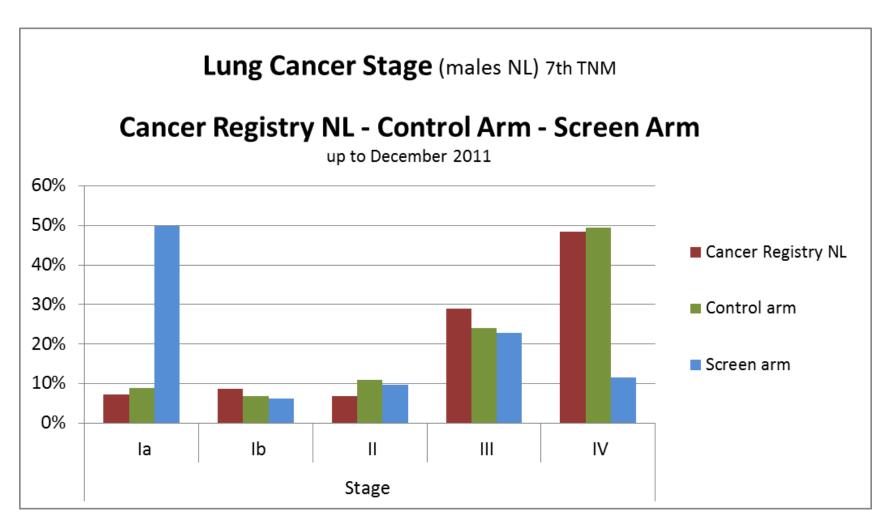
- Individuals at significant risk for the disease
- Apply adequate test for early detection
 - High number of false positives leads to increased number of complications
- Improved treatment option for early-detected disease

NELSON trial – CT screening for lung cancer

Population

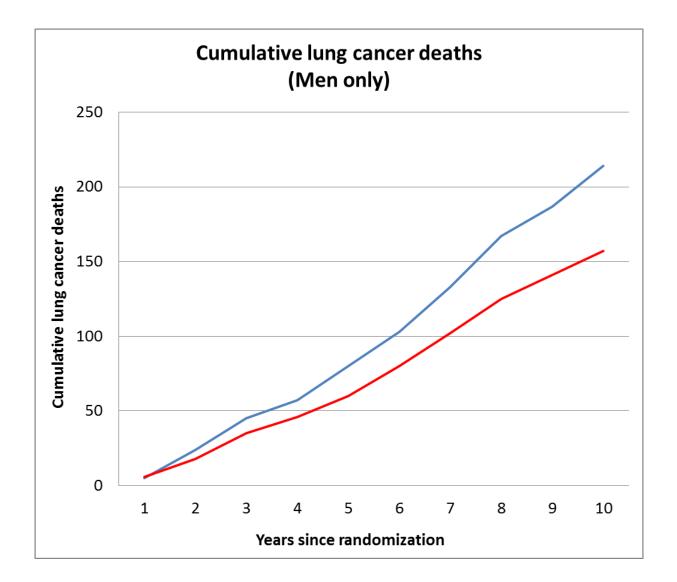
- Aged 50-74 years
- Smoking history
 - >10 cig/day for >30 years
 - >15 cig/day for >25 years
- Smoking cessation ≤10 years

Coordinated by

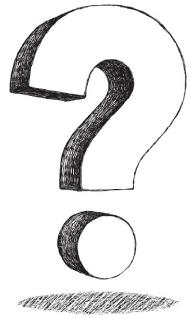


Cancer Institute

		indeterminate	positive test	lung cancer	positive predictive
	screening uptake	test result	result	detection	value
			(final result)	(participants)	positive test result
ROUND 1	7,557 (95.6%)	1,451 (19.2%)	197 (2.6%)	70 (0.9%)	36%
ROUND 2	7,295 (92.3%)	480 (6.6%)	131 (1.8%)	55 (0.8%)	42%
ROUND 3	6,922 (87.6%)	471 (6.8%)	165 (2.4%)	75 (1.1%)	45%
ROUND 4	5,279 (66.8%)	101 (1.9%)	105 (2.0%)	43 (0.8%)	41%
TOTAL	27,053 (85.6%)	2,503 (9.3%)	598 (2.2%)	243 (0.9%)	41%

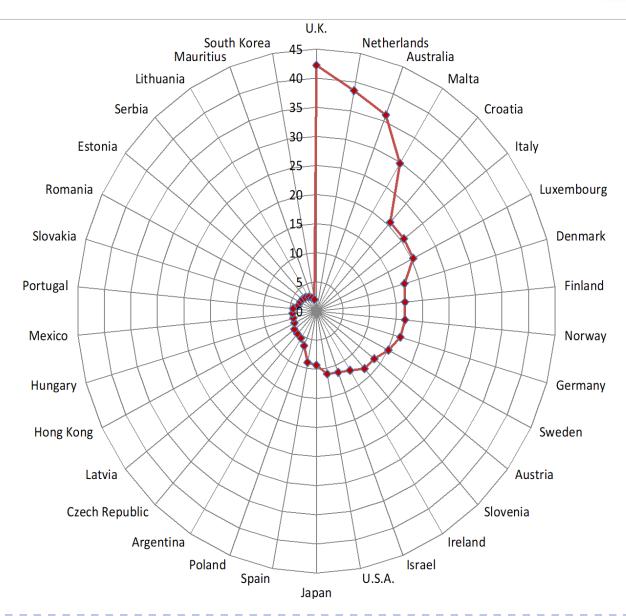


Yousaf-Khan et al., in preparation


Cancer Institute

Control arm: 214 lung cancer deaths

Screen arm: 157 lung cancer deaths

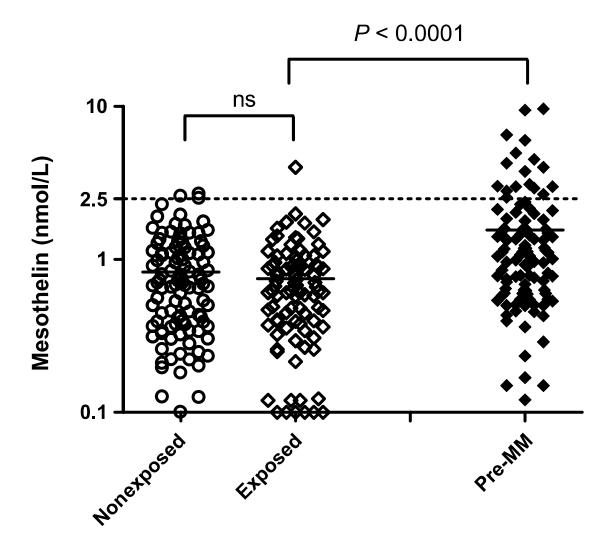


CAN WE DO THE SAME IN MESOTHELIOMA?

Male mesothelioma mortality 2010



Mesothelioma risk


- Dependent of asbestos exposure
- Varies from immeasurably low from occasional exposure to 10% in the highest-exposed asbestos workers

Cancer Institute

Studies Reporting Sensitivity and Specificity of Mesothelin in Undiagnosed Effusions

Study	Study Setting	Study Cohort	Cytologic Analysis	Total No.	No. MM	Sens,ª %	Spec, ^a %	NPV,ª %	PPV,ª %
Davies et al ¹⁵	Oxford Centre for Respiratory Medicine, Oxford, UK	166 consecutive patients with possible malignant PE	Atypical Nondiagnostic/ nonmalignant	11 94	8 7	63 57	100 97	50 97	100 57
Hooper et al ¹⁶	North Bristol Lung Centre, Bristol, UK	206 consecutive patients with a new undiagnosed PE	Atypical Nondiagnostic	26 148	13 15	73 64	70 96	70 96	73 69
Canessa et al ¹⁷	Division of Pneumology, La Spezia, Italy	275 consecutive patients with undiagnosed PE	Undiagnosed	NR	NR	76	94	NR	NR
Creaney et al ¹⁸	PathWest Diagnostic Laboratory, Perth, WA, Australia	1,331 consecutive patients with possible malignant PE	Atypical/suspicious Nondiagnostic/ nonmalignant	81 855	34 43	62 44	98 99	78 97	95 65

Erasmus MC Cancer Institute

Biomarkers

- Old
 - Mesothelin
 - Osteopontin
 - Fibulin-3

- New
 - ENOX2
 - Circulating microRNA
 - High-mobility group box 1
 - Proteomics
 - Deep learning

Ultra-Low-Dose Chest Computer Tomography Screening of an Asbestos-exposed Population in Western Australia

Cancer Institute

Characteristic	LDCT	No LDCT

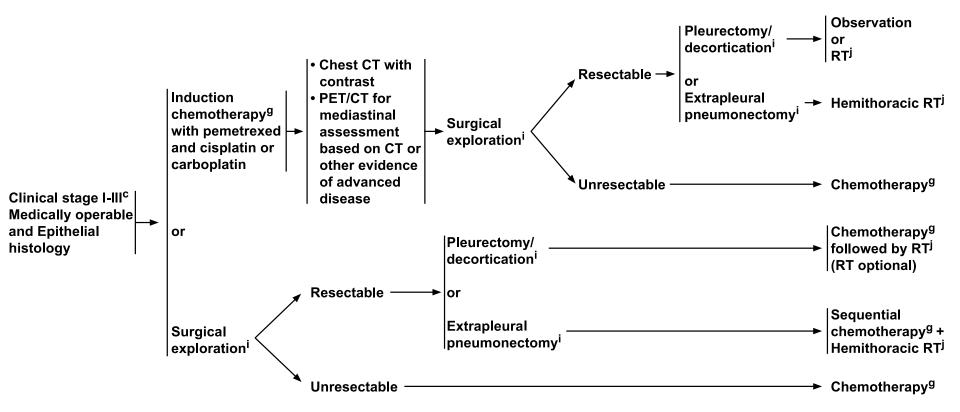
Total subjects Mean (SD) age, yr Male Smoking status Current Ex Never Mean (SD), pack-years Asbestos exposure Wittenoom worker Wittenoom resident Other occupational Mean (SD) time since first exposure, yr Mean (SD) exposure duration, Spirometry Percentage predicted FEV₁ Percentage predicted FVC FEV₁/FVC ratio DLCO

906 402 ASBESTOS FIBRES AND DUST ARE PRESENT AND MAY BE AIRBORNE IN AND AROUND WITTENOOM AIRBORNE ASBESTOS FIBRES AND DUST ARE A HEALTH HAZARD AND MAY RESULT IN SERIOUS ILLNESS IN THE EVENT OF INHALATION ASBESTOS FIBRE AND DUST CONCENTRATIONS IN THE AIR ARE INCREASED BY VEHICULAR HUMAN, ANIMAL AND OTHER MOVEMENTS 21.60 (6.45) 21.02 (5.62)

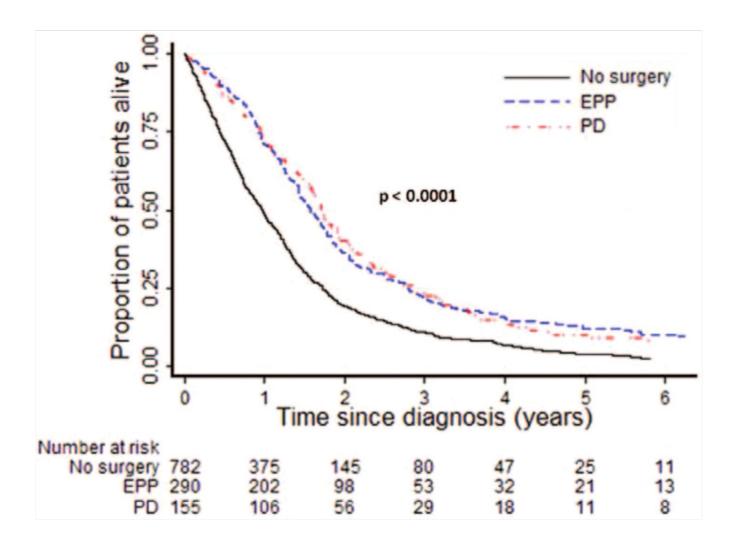
Results

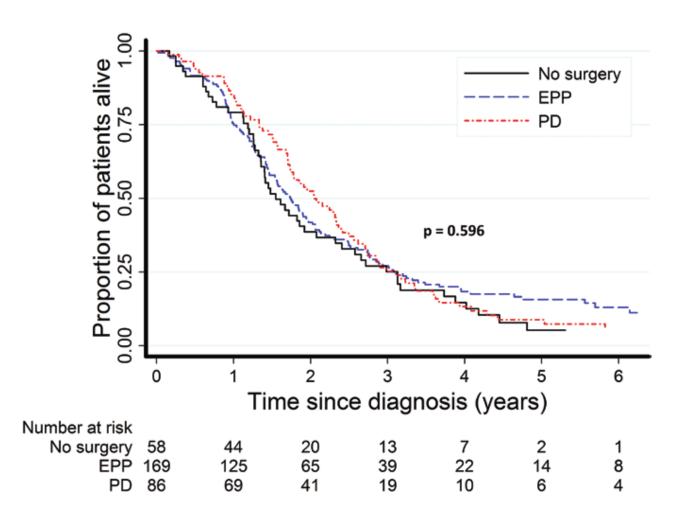
	Year 1	Year 2
Total subjects	906	973
1 st scan	906 (100%)	115 (11.8%)
Indeterminate nodule	79 (8.85%)	42 (4.3%)
Recall	77 (8.4%)	37 (3.8%)
Lung cancer	7 (0.77%)	3 (0.3%)
Mesothelioma	4 (0.44%)	1 (0.1%)

		indeterminate	positive test	lung cancer	positive predictive
	screening uptake	test result	result	detection	value
			(final result)	(participants)	positive test result
ROUND 1	7,557 (95.6%)	1,451 (19.2%)	197 (2.6%)	70 (0.9%)	36%
ROUND 2	7,295 (92.3%)	480 (6.6%)	131 (1.8%)	55 (0.8%)	42%
ROUND 3	6,922 (87.6%)	471 (6.8%)	165 (2.4%)	75 (1.1%)	45%
ROUND 4	5,279 (66.8%)	101 (1.9%)	105 (2.0%)	43 (0.8%)	41%
TOTAL	27,053 (85.6%)	2,503 (9.3%)	598 (2.2%)	243 (0.9%)	41%


CT screening

- Even in the highest asbestos exposed workers, the incidence of mesothelioma is lower than lung cancer in lung cancers screening studies.
- A positive outcome of such trials is unimaginible:
 - Number needed to screen vs number of asbestos exposed persons
 - Harm done by unneccessary interventions
 - In addition....


NCCN guidelines 2018.2


Surgery in mesothelioma

Surgery in mesothelioma

- <70 years</p>
- Chemotherapy
- Epithelial subtype

Surgery

No curative treatment for early stage mesothelioma

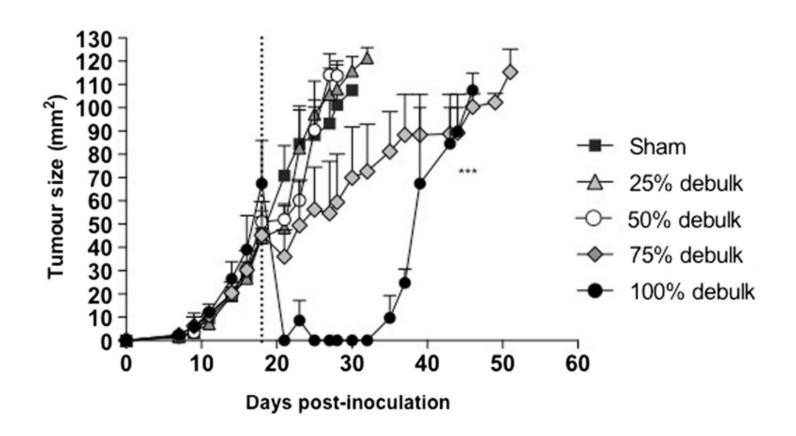
Currently, there is no consensus regarding the optimal multimodality approach to patients with resectable MPM.¹⁷ As complete surgical resection (R0 resection) remains elusive in most patients with MPM, local recurrence represents the most common form of disease relapse. To

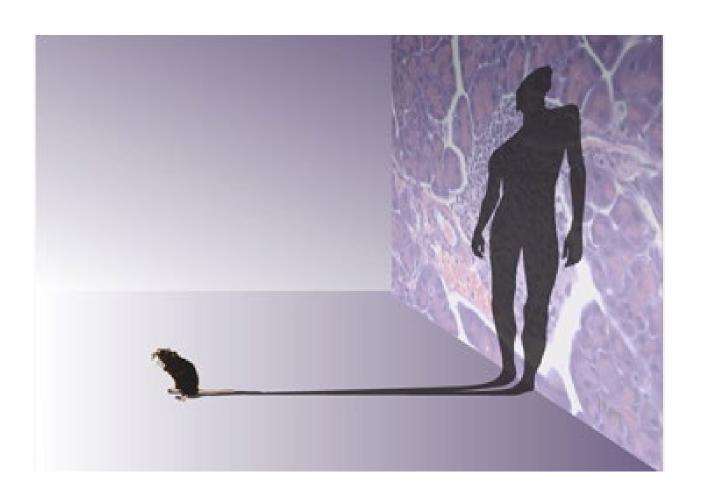
Current and Future Management of Malignant Mesothelioma: A Consensus Report from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation

Conclusion:

SCREENING FOR EARLY STAGE MESOTHELIOMA IS POINTLESS

Future perspective

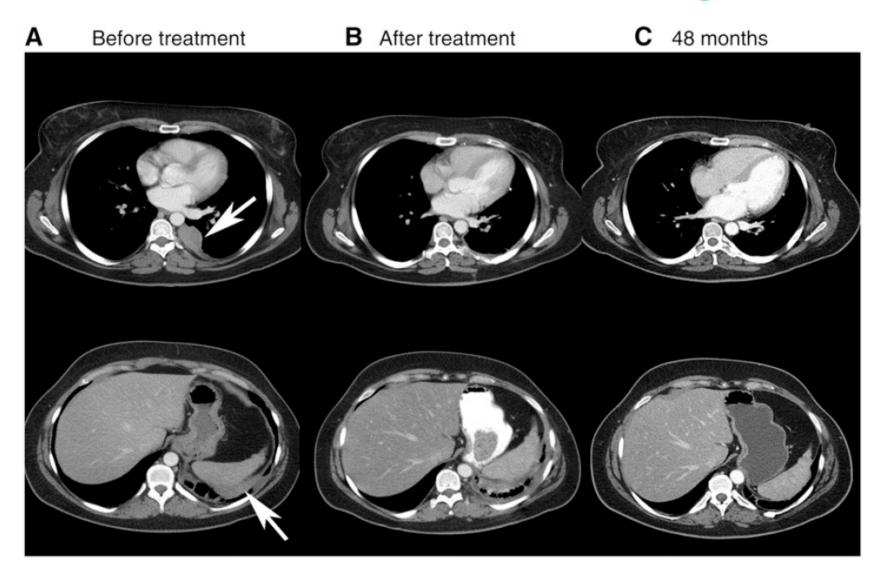

Erasmus MC rafus


We need better treatment!

Combining immunotherapy with surgery

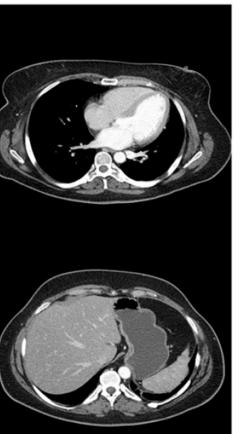
Dendritic Cell Immunotherapy

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 668769



Patient

- Epithelial type mesothelioma
- Induction chemotherapy, 4 cycles of cisplatin pemetrexed
 - Stable disease
- Pleurectomy/decortication
 - 90% viable tumor tissue, hardly any chemotherapy effect
 - Irradical resection allover
- Adjuvant dendritic cell immunotherapy



Patient

Erasmus MC

Treatment in 2010

C 48 months

January 2019

Take home messages

- Screening for mesothelioma currently not useful
 - No proven method
 - No consequences of finding disease in early stage

- Need for improved treatment in early-stage disease
 - When available; need for better screening tools