

<u>Severe Asthma Management</u>

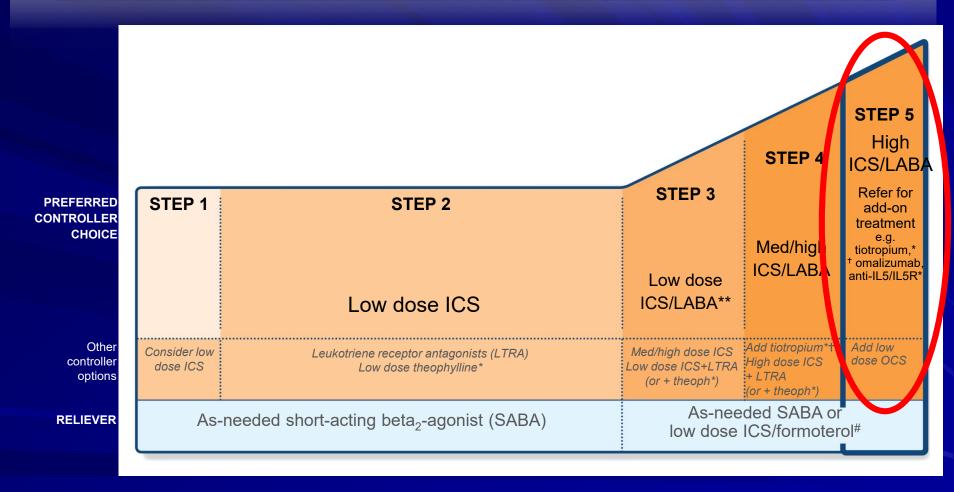
Guy BRUSSELLE, MD, PhD

Dept of Respiratory Medicine, Ghent University Hospital Dept of Epidemiology and Respiratory Medicine, Erasmus MC Rotterdam

Milan, 02/03/2019

<u>Disclosure: Guy Brusselle</u>

- ERS Science Council Chair
- GINA Scientific Committee Member and Board of Directors
- Member of Advisory boards for AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Novartis, Sanofi and Teva.
- Lecture fees from AstraZeneca, Boehringer-Ingelheim, Chiesi, GlaxoSmithKline, Novartis and Teva.


Severe Asthma Management

Severe asthma: Diagnosis

- Definition
- Difficult-to-control asthma
- Phenotyping
- Severe asthma: Targeted therapies
 - Uncontrolled severe asthma
 - Corticodependent severe asthma
- Biomarkers
- Conclusion

Treatment of asthma (GINA 2018)

www.ginasthma.com

Severe Asthma Management

Severe asthma: Diagnosis

- Definition
- Difficult-to-control asthma
- Phenotyping
- Severe asthma: Targeted therapies
 - Uncontrolled severe asthma
 - Corticodependent severe asthma
- Biomarkers
- Conclusion

ERS / ATS Guidelines on severe asthma

TASK FORCE REPORT ERS/ATS GUIDELINES ON SEVERE ASTHMA

International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma

Kian Fan Chung^{1,2,21}, Sally E. Wenzel^{3,21}, Jan L. Brozek⁴, Andrew Bush^{1,2}, Mario Castro⁵, Peter J. Sterk⁶, Ian M. Adcock¹, Eric D. Bateman⁷, Elisabeth H. Bel⁶, Eugene R. Bleecker⁸, Louis-Philippe Boulet⁹, Christopher Brightling¹⁰, Pascal Chanez¹¹, Sven-Erik Dahlen¹², Ratko Djukanovic¹³, Urs Frey¹⁴, Mina Gaga¹⁵, Peter Gibson¹⁶, Qutayba Hamid¹⁷, Nizar N. Jajour¹⁸, Thais Mauad¹⁹, Ronald L. Sorkness¹⁸ and W. Gerald Teague²⁰

Definition of severe asthma

When the diagnosis of asthma is confirmed and comorbidities addressed,

severe asthma is defined as asthma that requires treatment with high dose inhaled corticosteroids plus a second controller and/or systemic corticosteroids to prevent it from becoming uncontrolled or that remains uncontrolled despite this therapy.

Definition of uncontrolled asthma

- At least one of the following:
- Poor symptom control: ACQ consistently > 1.5, ACT < 20
- 2. Frequent severe exacerbations: two or more bursts of systemic CS in the previous year
- 3. Serious exacerbations: at least one hospitalisation or ICU stay in the previous year
- 4. Airflow limitation: after appropriate bronchodilator withold $FEV_1 < 80\%$ predicted

Evaluation of uncontrolled asthma

Poor compliance (ICS) Poor inhaler technique Environmental factors: -Allergen exposure -Smoking Incorrect diagnosis Significant comorbidities

Evaluation of uncontrolled asthma

TABLE 7 Comorbidities and contributory factors

- 1) Rhinosinusitis/(adults) nasal polyps
- 2) Psychological factors: personality trait, symptom perception, anxiety, depression
- 3) Vocal cord dysfunction
- 4) Obesity
- 5) Smoking/smoking related disease
- 6) Obstructive sleep apnoea
- 7) Hyperventilation syndrome
- 8) Hormonal influences: premenstrual, menarche, menopause, thyroid disorders
- 9) Gastro-oesophageal reflux disease (symptomatic)
- Drugs: aspirin, non-steroidal anti-inflammatory drugs (NSAIDs), β-adrenergic blockers, angiotensinconverting enzyme inhibitors

GINA DIFFICULT-TO-TREAT & SEVERE ASTHMA

in adolescent and adult patients

Diagnosis and Management

A GINA Pocket Guide For Health Professionals

November 2018

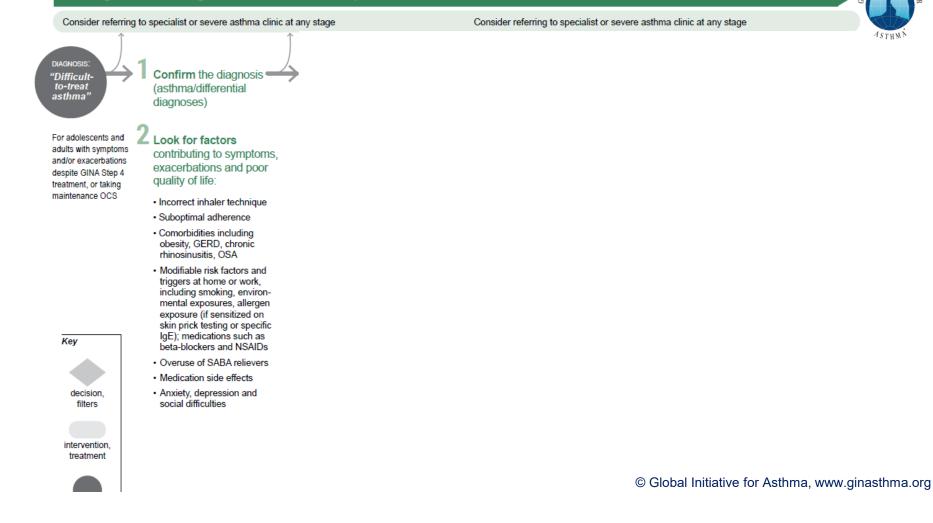
© Global Initiative for Asthma, www.ginasthma.org

© Global Initiative for Asthma, 2018 www.ginasthma.org

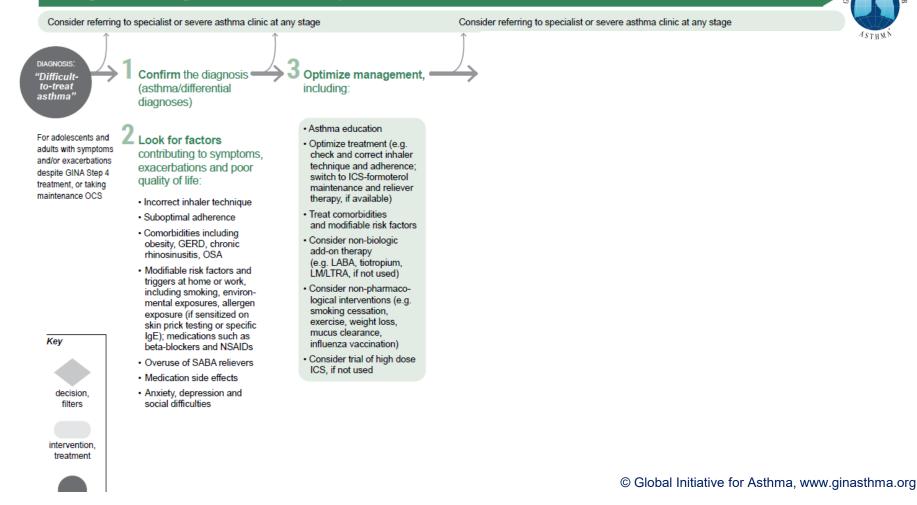
Investigate and manage adult and adolescent patients with difficult-to-treat asthma

Consider referring to specialist or severe asthma clinic at any stage

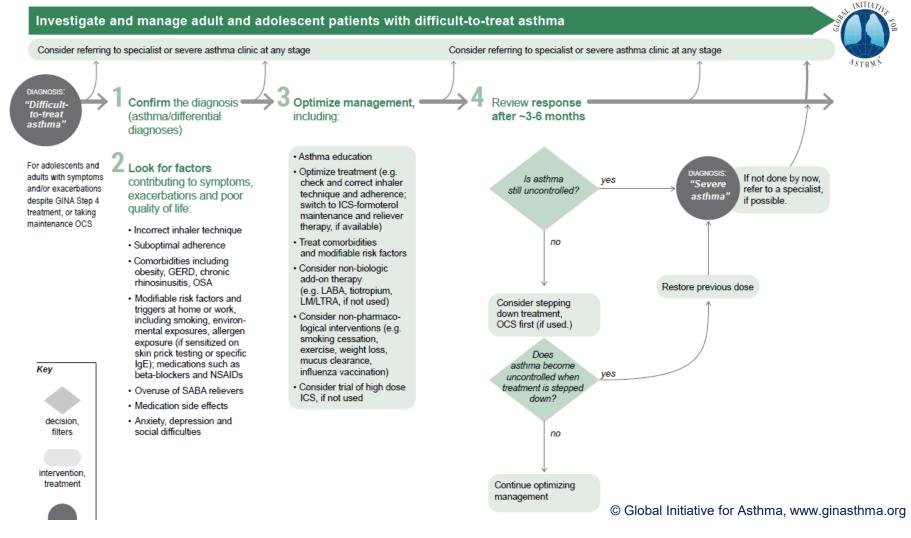
Consider referring to specialist or severe asthma clinic at any stage


For adolescents and adults with symptoms and/or exacerbations despite GINA Step 4 treatment, or taking maintenance OCS

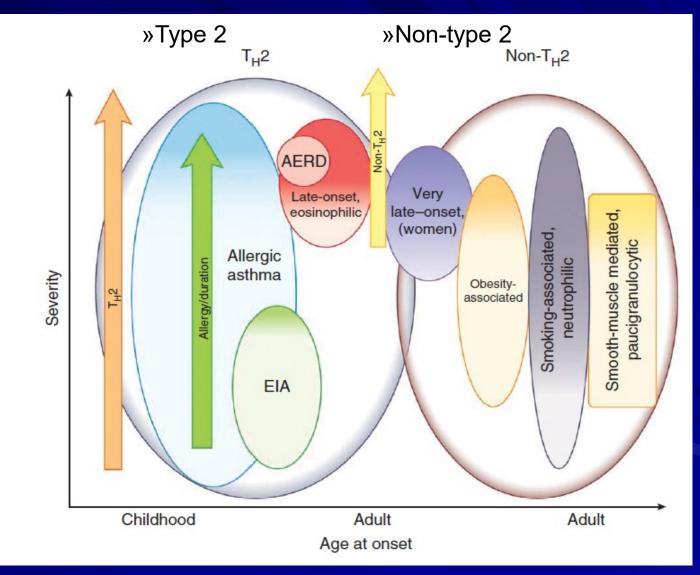
© Global Initiative for Asthma, www.ginasthma.org



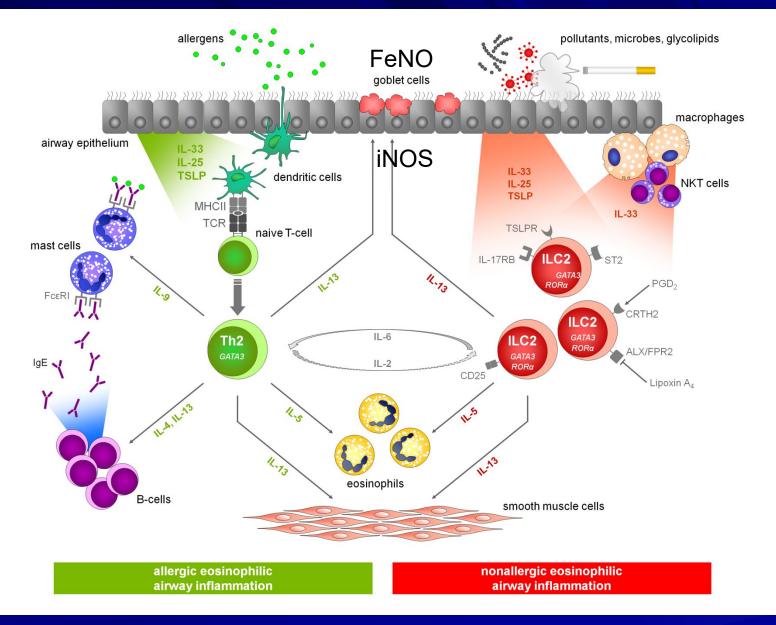
Investigate and manage adult and adolescent patients with difficult-to-treat asthma



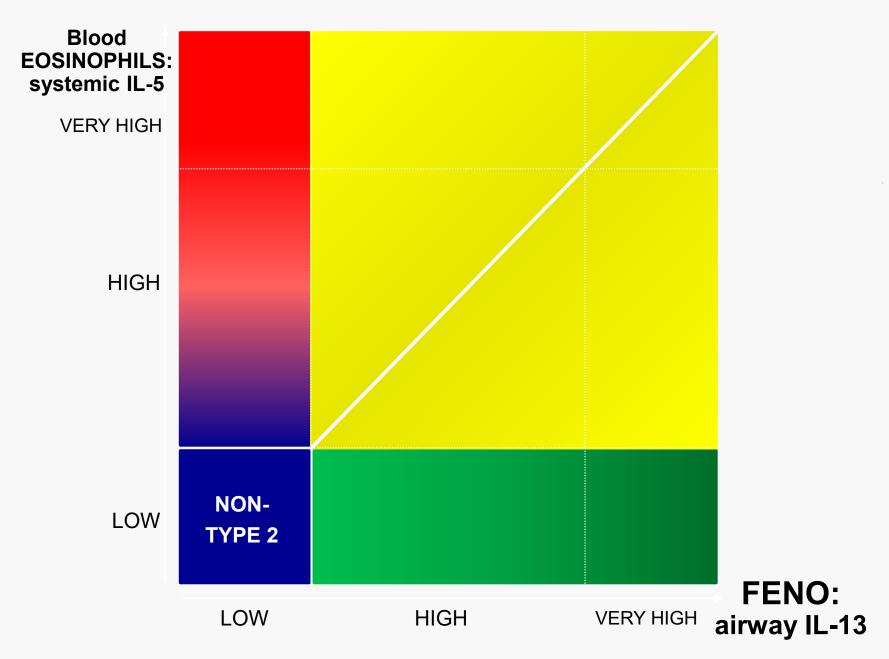
NITIA


Investigate and manage adult and adolescent patients with difficult-to-treat asthma

NIT14


Phenotypes of severe asthma

AERD = aspirin exacerbated respiratory disease; EIA = exercise-induced asthma


Wenzel SE. Nat Med 2012;18(5):716–25.

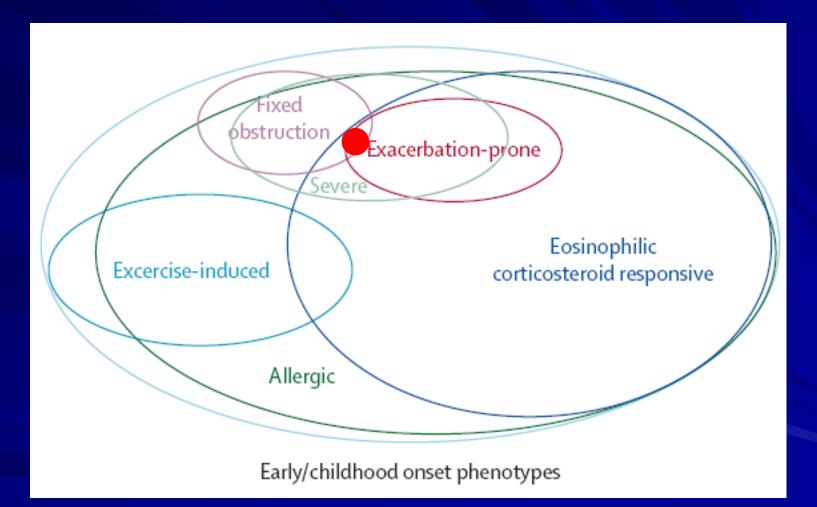
Heterogeneity of eosinophilic asthma

Brusselle G. et al. Nat Med 2013.

Asthma: type 2 versus non-type 2 inflammation

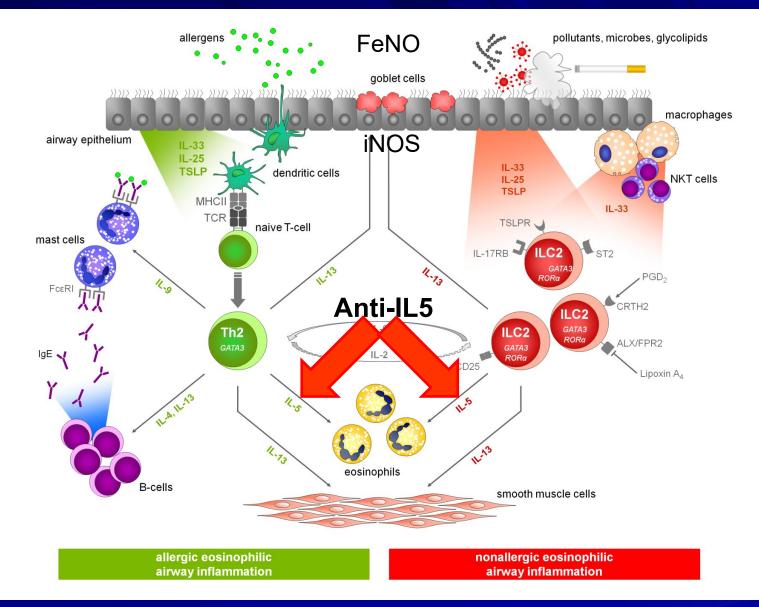
Severe Asthma Management

Severe asthma: Diagnosis

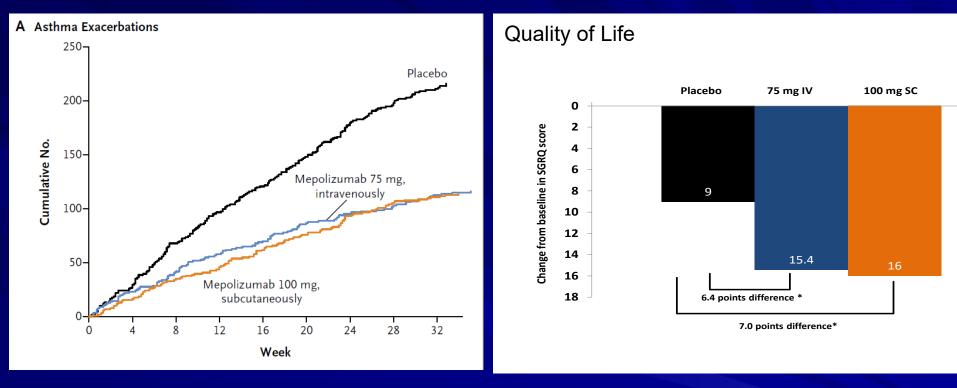

- Definition
- Difficult-to-control asthma
- Phenotyping

Severe asthma: Targeted therapies

- Uncontrolled severe asthma
- Corticodependent severe asthma
- Biomarkers
- Conclusion

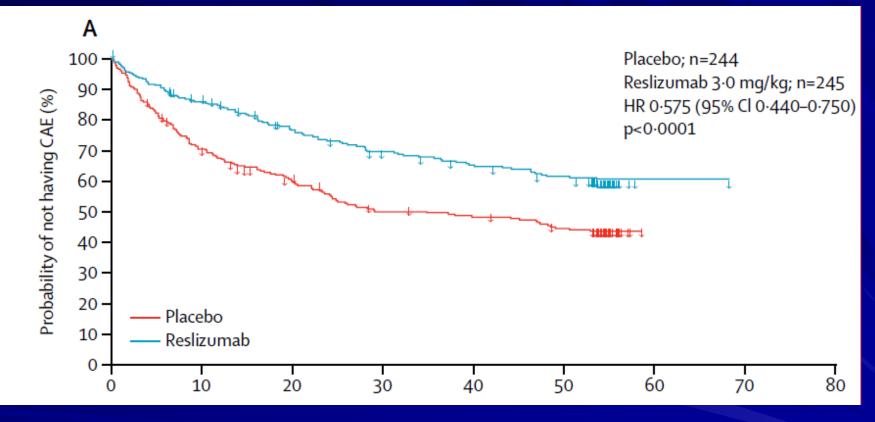


Anti-IgE omalizumab in severe allergic asthma



Anti-IL5 monoclonal antibodies mepolizumab and reslizumab in severe eosinophilic asthma

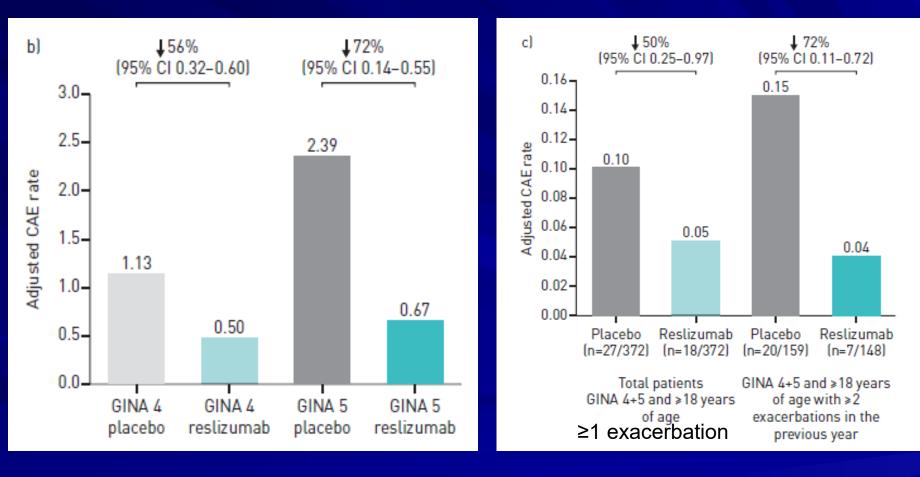
Brusselle G. et al. Nat Med 2013.


Anti-IL5 mepolizumab reduces exacerbation rate in severe eosinophilic asthma

Adolescents and adults on high dose ICS+LABA with \geq 2 exacerbations in the past year and blood eos > 300/µL in the past year or > 150/µL at screening.

MENSA study. Ortega H. et al, NEJM 2014.

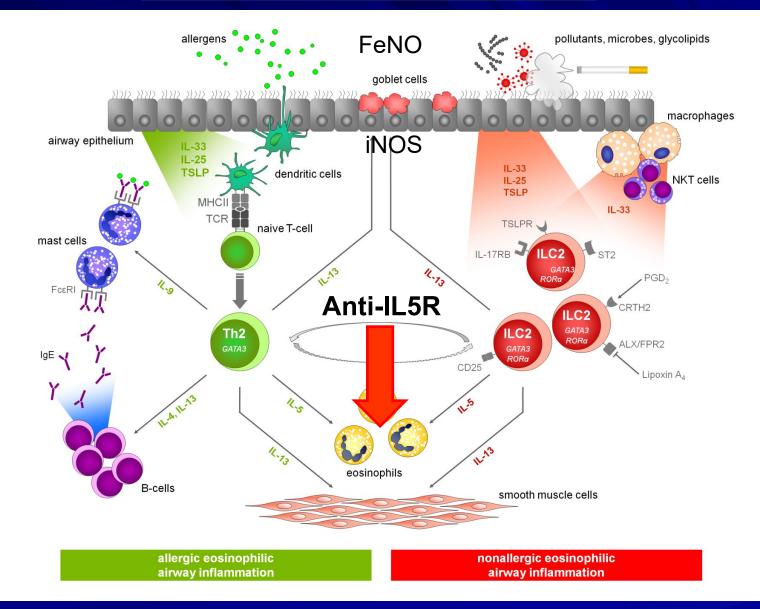
Anti-IL5 reslizumab IV reduces exacerbation rate in severe eosinophilic asthma


Adolescents and adults on medium to high dose ICS+LABA with uncontrolled asthma (ACQ > 1.5), \geq 1 exacerbation in the past year and blood eos > 400/µL (at screening).

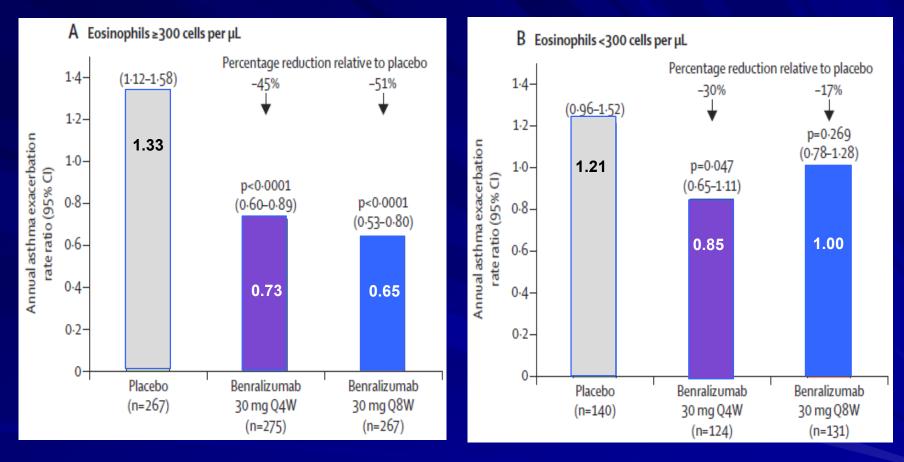
Castro M, et al. Lancet Resp Med 2015.

Reduction of exacerbation rates with reslizumab IV in eosinophilic asthma according to clinical characteristics

Severe asthma exacerbations (OCS)

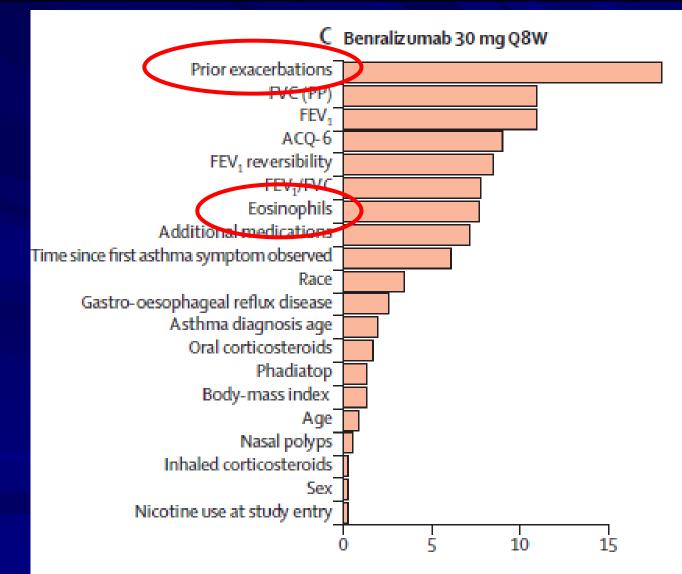

ED visits or hospitalisation

Brusselle G. et al, ERJOR 2017.


Anti-IL5 receptor monoclonal antibody benralizumab

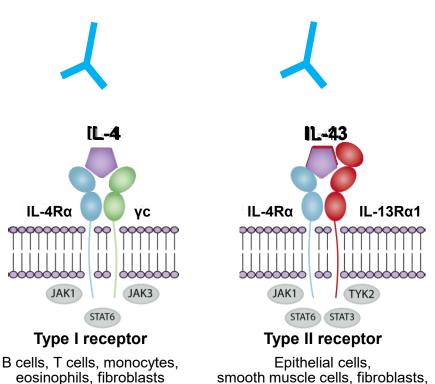
in severe eosinophilic asthma

Brusselle G. et al. Nat Med 2013.

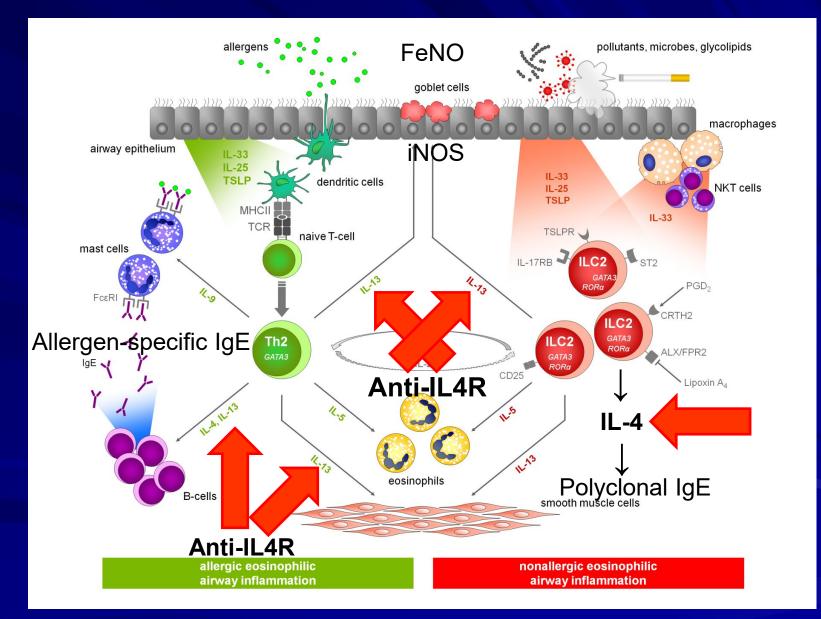

Anti-IL5R monoclonal antibody benralizumab reduces exacerbation rate in severe eosinophilic asthma

Adolescents and adults on high dose ICS+LABA with uncontrolled asthma (ACQ \ge 1.5) and at least 2 exacerbations in the last year.

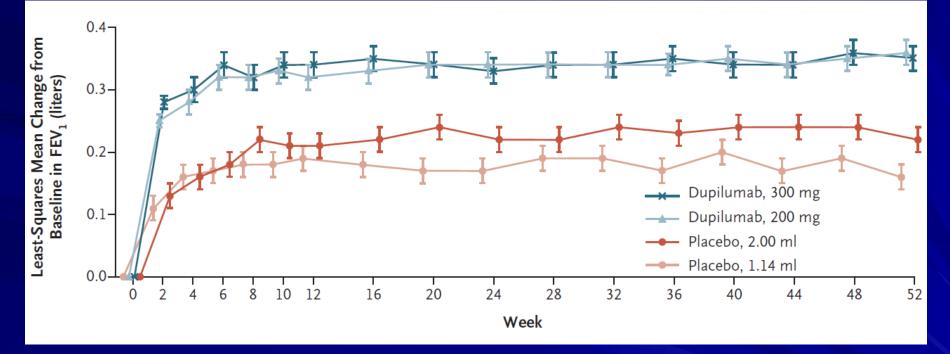
SIROCCO study. E. Bleecker et al, Lancet 2016.


Benralizumab: predictors of response

M. FitzGerald et al, Lancet RM 2018.


Anti-IL4Rα monoclonal antibody dupilumab: mechanism of action

- **Dupilumab** is a fully human IL-4R α monoclonal antibody inhibiting IL-4 and **IL-13** signaling pathways, key drivers of Type 2 inflammation.
- **Dupilumab** is approved for the treatment of adults with moderate-tosevere atopic dermatitis; and has also shown efficacy in patients with other Type 2 inflammatory diseases including nasal polyposis with chronic rhinosinusitis.


smooth muscle cells, fibroblasts, monocytes, activated B cells

Anti-IL4 receptor (IL4R) monoclonal antibody dupilumab

Brusselle G. et al. Nat Med 2013.

Anti-IL4R dupilumab improves lung function in uncontrolled moderate-to-severe asthma

Adolescents and adults with uncontrolled asthma (ACQ-5 > 1.5) on medium-to-high dose ICS plus up to two additional controllers and ≥ 1 severe exacerbation in the previous year; NO minimum requirement for blood eosinophil count or FENO.

LIBERTY ASTHMA QUEST study. Castro M. et al, NEJM 2018.

Dupilumab prevents exacerbations in uncontrolled moderate-to-severe asthma

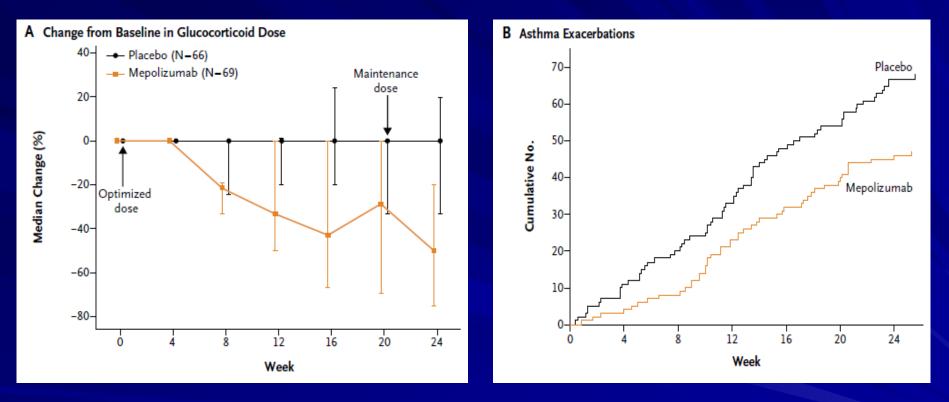
A Dupilumab, 200 mg Every 2	2 Wk, vs. Match	ed Placebo		
Subgroup	No. of Patients		Relative Risk vs. Placebo (95% CI)	
	Placebo	Dupilumab		
Overall	317	631		0.52 (0.41-0.66)
Eosinophil count				
≥300 cells/mm ³	148	264		0.34 (0.24-0.48)
\geq 150 to <300 cells/mm ³	84	173		0.64 (0.41-1.02)
<150 cells/mm ³	85	193	_	0.93 (0.58-1.47)
Fe _{NO}				
≥50 ppb	71	119	_ _	0.31 (0.18-0.52)
≥25 to <50 ppb	91	180	— •	0.39 (0.24-0.62)
<25 ppb	149	325		0.75 (0.54-1.05)
		(0.1 0.25 0.5 0.75 1 1.5 2	
		-	■ Dupilumab Placebo	
			Dupilumab Placebo Better Better	

NO minimum requirement for blood eosinophil count or FENO.

LIBERTY ASTHMA QUEST study. Castro M. et al, NEJM 2018.

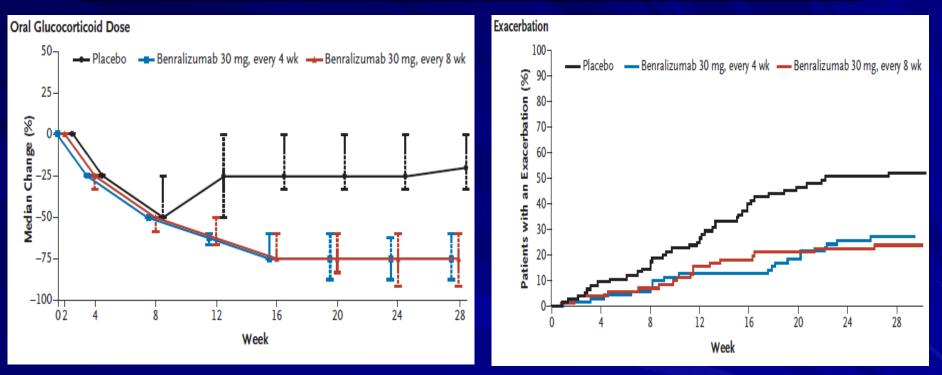
Anti-cytokine (receptor) monoclonal antibodies as add-on therapy in severe asthma

Monoclonal antibody	Therapeutic target	Phenotypic Biomarkers	Route of administration Dosing	Indication
Benralizumab	IL-5 Receptor alpha (IL-5Rα)	Blood eosinophil levels <i>Sputum eosinophil</i> <i>levels</i>	SC 30 mg every 4 weeks (first three doses), followed by 30 mg every 8 weeks	Severe eosinophilic asthma
Dupilumab	IL-4 Receptor alpha (IL-4Rα)	Increased FENO and/or blood eosinophil levels	SC 200 mg or 300 mg every 2 weeks	Severe type 2 (eosinophilic) asthma
Mepolizumab	IL-5	Blood eosinophil levels <i>Sputum eosinophil</i> <i>levels</i>	SC 100 mg every 4 weeks	Severe eosinophilic asthma
Reslizumab	IL-5	Blood eosinophil levels <i>Sputum eosinophil</i> <i>levels</i>	IV 3mg/kg every 4 weeks	Severe eosinophilic asthma


Severe Asthma Management

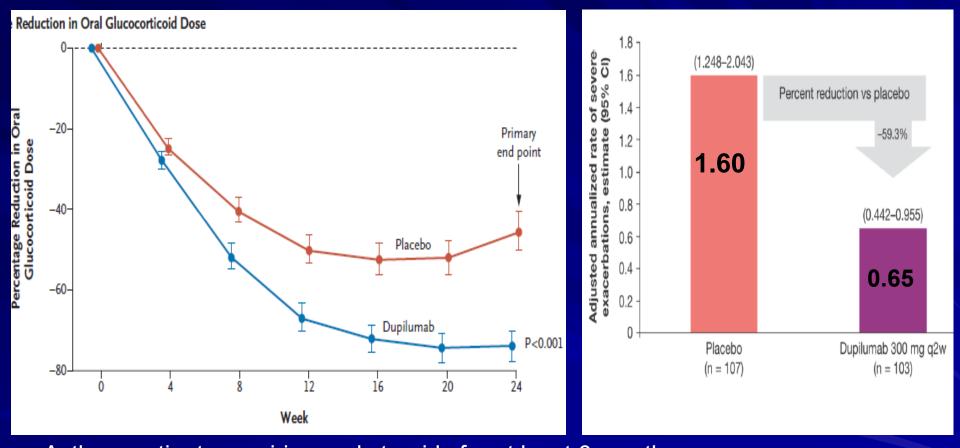
Severe asthma: Diagnosis

- Definition
- Difficult-to-control asthma
- Phenotyping
- Severe asthma: Targeted therapies
 - Uncontrolled severe asthma
 - Corticodependent severe asthma
- Biomarkers
- Conclusion


Oral glucocorticoid-sparing effect of mepolizumab in severe eosinophilic asthma

Asthma patients requiring oral steroids for at least 6 months (plus high dose ICS + second controller); blood eosinophil count at optimization phase >150/µl or >300/µl in preceding year.

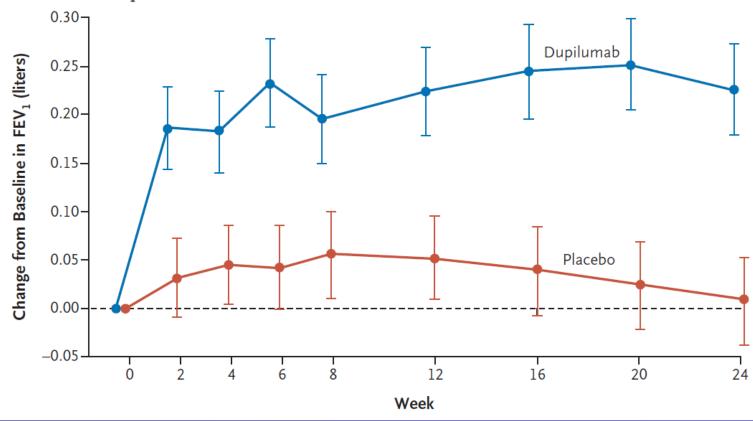
SIRIUS study. Bel E. et al, NEJM 2014.


Oral glucocorticoid-sparing effect of benralizumab in severe eosinophilic asthma

Asthma patients requiring oral steroids for at least 6 months (plus high dose ICS+LABA); blood eosinophil count at baseline >150/µl.

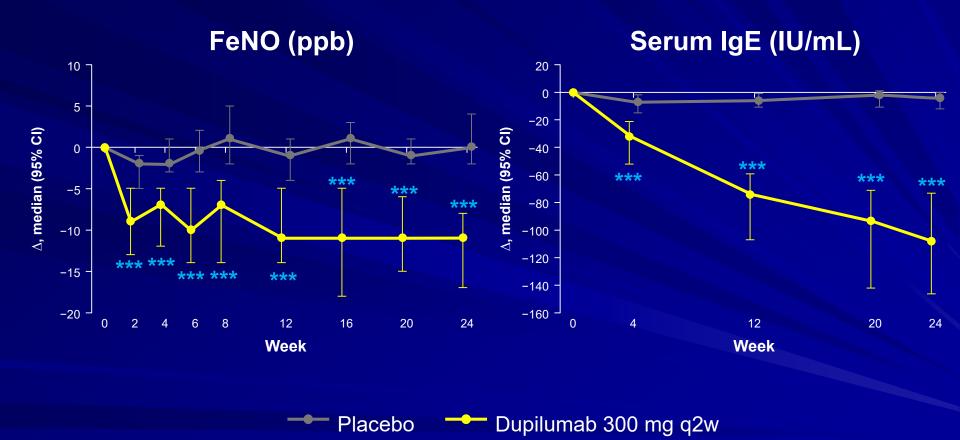
ZONDA study. Nair P. et al, NEJM 2017.

Oral glucocorticoid-sparing effect of dupilumab in OCS-dependent severe asthma



Asthma patients requiring oral steroids for at least 6 months (plus high dose ICS + up to 2 controllers); no minimum requirement of Type 2 biomarkers (blood eosinophil count or FENO).

LIBERTY ASTHMA VENTURE trial. Rabe K. et al, NEJM 2018.


Effect of dupilumab on lung function in OCS-dependent severe asthma

Change from Baseline in FEV₁ before Bronchodilator Use

LIBERTY ASTHMA VENTURE trial. Rabe K. et al, NEJM 2018.

Dupilumab Reduced FeNO and Serum Total IgE in OCS-dependent severe asthma

Rabe K. et al, ERS Congress Paris 2018.

Dupilumab safety: overview of adverse events

Event	Placebo Group (N = 107)	Dupilumab Group (N = 103)	
	number (percent)		
Any adverse event	69 (64)	64 (62)	
Any serious adverse event	6 (6)	9 (9)	
Any adverse event leading to death	0	0	
Any adverse event leading to permanent discontinuation of trial regimen	4 (4)	1 (1)	
Adverse event occurring in \geq 5% of patients in either group†			
Viral upper respiratory tract infection	19 (18)	9 (9)	
Bronchitis	6 (6)	7 (7)	
Sinusitis	4 (4)	7 (7)	
Influenza	6 (6)	3 (3)	
Eosinophilia‡	1 (1)	14 (14)	
Injection-site reaction§	4 (4)	9 (9)	
\geq 1 measurement of blood eosinophil count >3000 cells/mm ³	1 (1)	13 (13)	

LIBERTY ASTHMA VENTURE trial. Rabe K. et al, NEJM 2018.

Oral glucocorticoid-sparing effect of monoclonal antibodies in severe asthma

Drug	Trial Acronym	Dosing and Route of administration	Median percent reduction in daily OCS dose
mepolizumab	SIRIUS	SC 100 mg every 4 wk	-50% vs baseline; -50% vs placebo
benralizumab	ZONDA	SC 30 mg every 4 or 8 wk *	-75% vs baseline; -50% vs placebo
dupilumab	LIBERTY ASTHMA VENTURE	SC 300 mg every 2 wk	-70% vs baseline; -28% vs placebo

* benralizumab SC 30 mg every 4 wk (first 3 doses), followed by 30 mg every 4 wk or every 8 wk

Severe Asthma Management

Severe asthma: Diagnosis

- Definition
- Difficult-to-control asthma
- Phenotyping
- Severe asthma: Targeted therapies
 - Uncontrolled severe asthma
 - Corticodependent severe asthma
- Biomarkers
- Conclusion

Useful Biomarkers in the Clinic

For a biomarker to be clinically useful in the management of a disease, the biomarker must be either:

Diagnostic:

- Chronic disease (BNP in heart failure)
- Acute attack / exacerbation (*troponin* in myocardial infarction);
- Prognostic: predicting the course of the disease: e.g. increased *blood eosinophilia* predicts future risk of exacerbations in (severe) asthma;
- Theragnostic: predicting the response to therapy: e.g. increased FeNO predicts response to ICS in asthma.

Type 2 biomarkers in (severe) asthma

Biomarker	Prognostic	Theragnostic	Therapeutic target
Blood eosinophil count	++	<pre>++: anti-IL5, anti-IL5R, anti-IL4Rα; +: anti-IgE</pre>	YES
FeNO	++	++ : anti-IL4Rα; +: anti-IgE, anti-IL5, anti-IL5R	NO
Serum total IgE	-	±	YES Local allergen- specific IgE

Severe Asthma Management

Severe asthma: Diagnosis

- Definition
- Difficult-to-control asthma
- Phenotyping
- Severe asthma: Targeted therapies
 - Uncontrolled severe asthma
 - Corticodependent severe asthma
- Biomarkers

<u>Management of Severe Asthma in Adults</u>

GINA Severe Asthma Pocket Guide:

- From difficult-to-treat towards severe asthma
- Phenotyping of severe asthma.
- In patients with type 2 <u>severe asthma</u> receiving maintenance treatment with OCS (GINA step 5b), add-on therapy with an anti-type 2 biologic (mepolizumab, benralizumab or dupilumab) is corticosteroid-sparing and reduces exacerbations.

Therapy of Uncontrolled Severe Asthma

- In patients with <u>type 2 severe asthma</u> and (frequent) exacerbations despite treatment with (medium-to-) high dose ICS+LABA (GINA step 5a), add-on therapy with the following biologics has been shown to be efficacious and safe:
 - omalizumab in severe allergic asthma
 - mepolizumab, reslizumab (IV) and benralizumab in severe eosinophilic asthma

- dupilumab in severe type 2 asthma.

Head-to-head comparative pragmatic trials in <u>type 2 severe asthma</u> are urgently needed.

PREDICTUMAB 01 TRIAL

PREDICTIVE FACTORS OF RESPONSE TO OMALIZUMAB AND MEPOLIZUMAB IN ALLERGIC AND EOSINOPHILIC SEVERE ASTHMA: A MULTICENTER PRAGMATIC TRIAL IN BELGIUM

> Pr Charles Pilette, MD PhD Cliniques universitaires St-Luc - pneumologie, Brussels Institut de Recherche Expérimentale & Clinique Université catholique de Louvain

On behalf of the asthma-allergy working group of the BSP (Belgian Society of Pneumology)

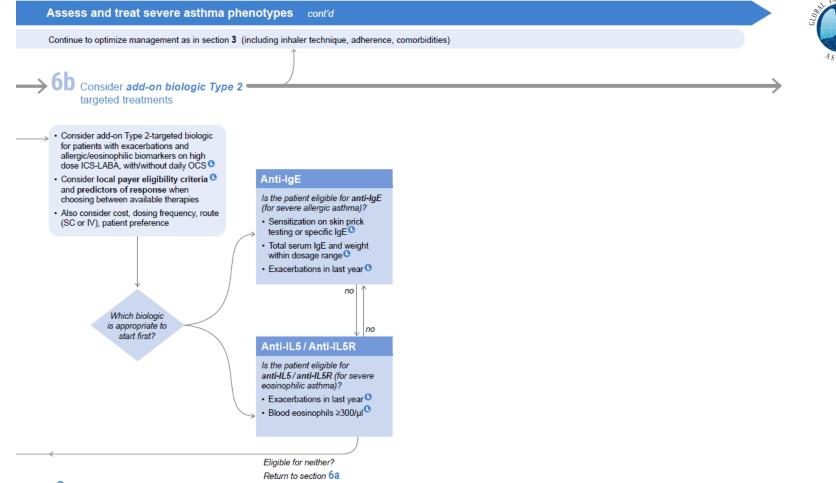
Guy Brusselle

Back-up slides

SPECIALIST CARE; SEVERE ASTHMA CLINIC IF AVAILABLE

Assess and treat severe asthma phenotypes contid

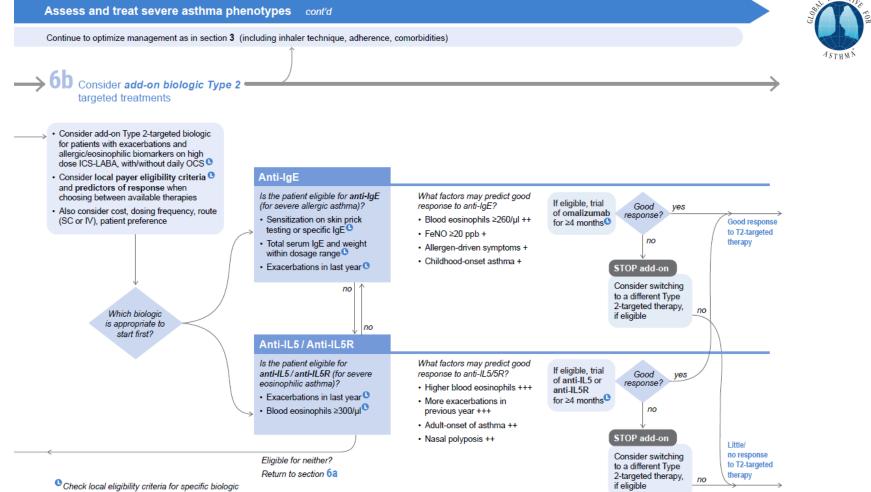
Continue to optimize management as in section 3 (including inhaler technique, adherence, comorbidities)


Consider add-on biologic Type 2 =
 targeted treatments

ASTHWK

- Consider add-on Type 2-targeted biologic for patients with exacerbations and allergic/eosinophilic biomarkers on high dose ICS-LABA, with/without daily OCS ^O
- Consider local payer eligibility criteria
 and predictors of response when choosing between available therapies
- Also consider cost, dosing frequency, route (SC or IV), patient preference

Check local eligibility criteria for specific biologic therapies as these may vary from those listed


SPECIALIST CARE; SEVERE ASTHMA CLINIC IF AVAILABLE

Check local eligibility criteria for specific biologic therapies as these may vary from those listed

© Global Initiative for Asthma, www.ginasthma.org

SPECIALIST CARE; SEVERE ASTHMA CLINIC IF AVAILABLE

therapies as these may vary from those listed

© Global Initiative for Asthma, www.ginasthma.org

Effects of biologics on biomarkers in severe asthma

		Blood eos	Sputum eos	FeNO	Serum IgE
OCS	oral steroids	44	44	44	¥
Anti-IL-5	mepolizumab	44	44	\leftrightarrow	\leftrightarrow
	reslizumab				
Anti-IL-5R	benralizumab	444	44	\leftrightarrow	\leftrightarrow
Anti-IL-13	lebrikizumab	↑	\leftrightarrow	44	¥
	tralokinumab				
Anti-IL-4R	dupilumab	♠	¥	44	$\mathbf{A}\mathbf{A}$
Anti-IgE	omalizumab	\leftrightarrow	$\mathbf{+}$	$\mathbf{A}\mathbf{A}$	↑ (↓)

eos: eosinophils

Courtesy: Ian Pavord