Imperial College London

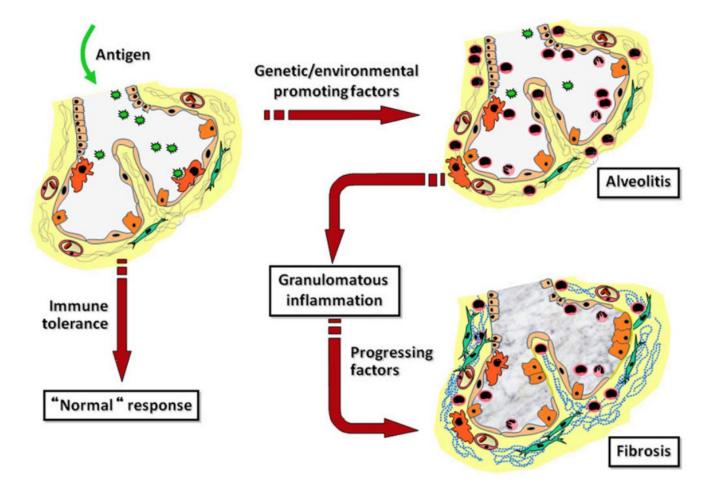
NHS Foundation Trust

Hypersensitivity pneumonitis

Milan, Italy 2nd March 2019

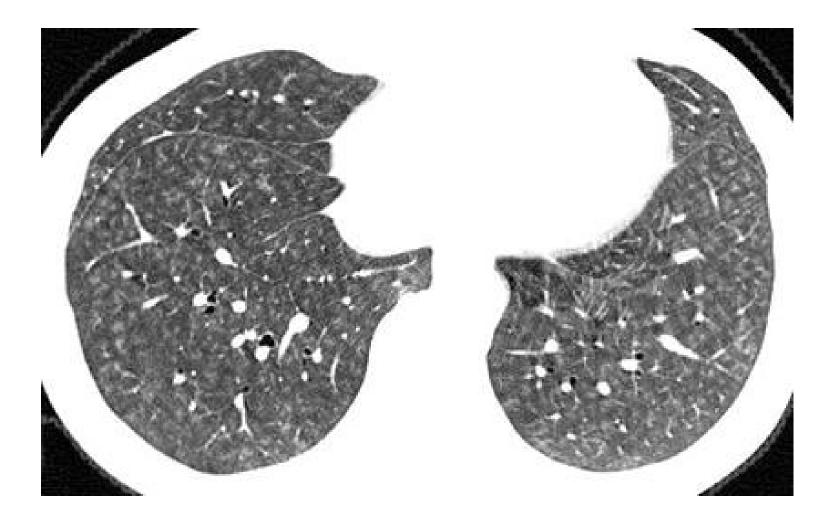
Toby Maher MB MSc PhD FRCP

British Lung Foundation Chair in Respiratory Research and NIHR Clinician Scientist Professor of Interstitial Lung Disease, National Heart Lung Institute, Imperial College, London Consultant Respiratory Physician, Royal Brompton Hospital

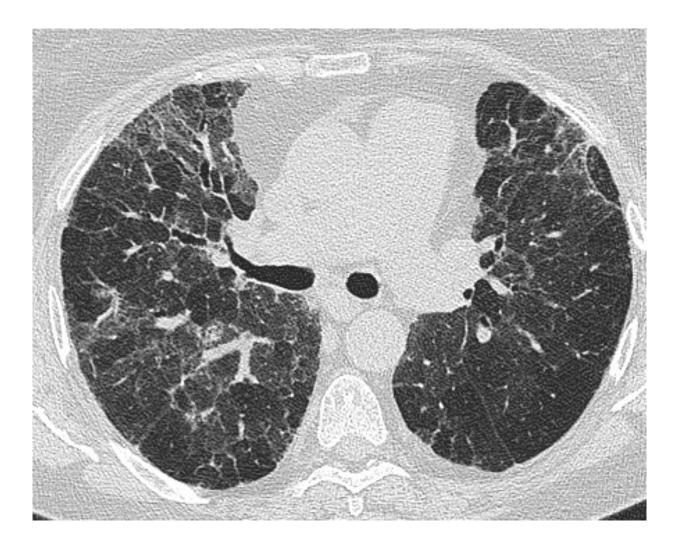

Imperial College London

Declarations of interest

- Board membership/consultancy
 - GSK
 - Boehringer Ingelheim
 - UCB
 - Roche
 - Bayer
 - Biogen Idec
 - ProMetic
 - Apellis
 - Respivert
 - PatientsLikeMe
- Lecture Fees
 - UCB
 - AstraZeneca
 - Boehringer Ingelheim
 - Roche
 - Cipla


- Clinical Trials
 - Boehringer Ingelheim
 - Novartis
 - GSK
 - Gilead Sciences
 - Roche
 - InterMune
 - Galecto
 - Sanofi Aventis
- Grants
 - GSK
 - Novartis
 - UCB

Hypersensitivity pneumonitis - pathogenesis



Selman et al AJRCCM 2012

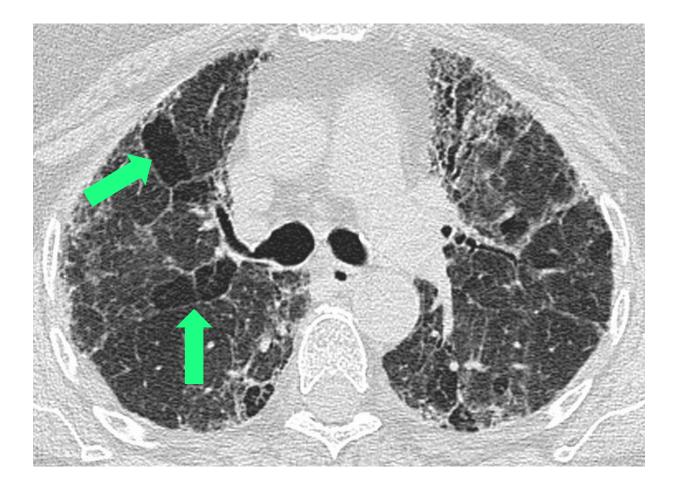
Acute hypersensitivity pneumonitis

Chronic hypersensitivity pneumonitis

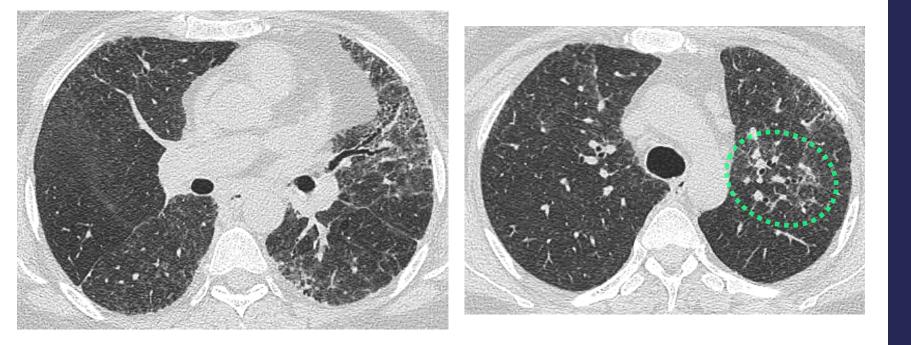
Assessment of suspected HP

- History
 - Exposure

Disease	Antigen	Source
Fungal and bacterial		
Farmer's lung	Saccharopolyspora rectivirgula	Moldy hay, grain, silage
Ventilation pneumonitis; humidifier lung; air conditioner lung	Thermoactinomyces vulgaris, Thermoactinomyces sacchari, Thermoactinomyces candidus, Klebsiella oxytoca	Contaminated forced-air systems; water reservoirs
Bagassosis	T. vulgaris	Moldy sugarcane (i.e., bagasse)
Mushroom worker's lung	T. sacchari	Moldy mushroom compost
Enoki mushroom worker's lung (Japan)	Penicillium citrinum	Moldy mushroom compost
Suberosis	Thermoactinomyces viridis, Aspergillus fumigatus, Penicillium frequentans, Penicillium glabrum	Moldy cork
Detergent lung; washing powder lung	Bacillus subtilis enzymes	Detergents (during processing or use)
Malt worker's lung	Aspergillus fumigatus, Aspergillus clavatus	Moldy barley
Sequoiosis	Graphium, Pullularia, and Trichoderma spp., Aureobasidium pullulans	Moldy wood dust
Maple bark stripper's lung	Cryptostroma corticale	Moldy maple bark
Cheese washer's lung	Penicillium casei, A. clavatus	Moldy cheese
Woodworker's lung	Alternaria spp., wood dust	Oak, cedar, and mahogany dust, pine and spruce pulp
Hardwood worker's lung	Paecilomyces	Kiln-dried wood
Paprika slicer's lung	Mucor stolonifer	Moldy paprika pods
Sauna taker's lung	Aureobasidium spp., other sources	Contaminated sauna water
Familial HP	B. subtilis	Contaminated wood dust in walls
Wood trimmer's lung	Rhizopus spp., Mucor spp.	Contaminated wood trimmings
Composter's lung	T. vulgaris, Aspergillus	Compost
Basement shower HP	Epicoccum nigrum	Mold on unventilated shower
Hot tub lung	Mycobacterium avium complex	Hot tub mists; mold on ceiling
Wine maker's lung	Botrytis cinerea	Mold on grapes
Woodsman's disease	Penicillium spp.	Oak and maple trees
Thatched roof lung	Saccharomonospora viridis	Dead grasses and leaves
Tobacco grower's lung	Aspergillus spp.	Tobacco plants
Potato riddler's lung	Thermophilic actinomycetes, S. rectivirgula, T. vulgaris, Aspergillus spp.	Moldy hay around potatoes
Summer-type pneumonitis	Trichosporon cutaneum	Contaminated old houses
Dry rot lung	Merulius lacrymans	Rotten wood
Stipatosis	Aspergillus fumigatus; T. actinomycetes	Esparto dust
Machine operator's lung	Mycobacterium immunogenum; Pseudomonas fluorescens	Aerosolized metalworking fluid
Residential provoked pneumonitis Amebae	Aureobasidium pullulans	Residential exposure
Humidifier lung	Naegleria gruberi, Acanthamoeba polyphaga, Acanthamoeba castellani, Bacillus sp., others	Contaminated water from home humidifier, ultrasonic misting fountains
Shower curtain disease	Phoma violacea	Moldy shower curtain
Animal proteins		
Pigeon breeder's or pigeon fancier's disease	Avian droppings, feathers, serum	Parakeets, budgerigars, pigeons, chickens, turkeys
Pituitary snuff taker's lung	Pituitary snuff	Bovine and porcine pituitary proteins
Fish meal worker's lung	Fish meal	Fish meal dust
Bat lung	Bat serum protein	Bat droppings
Furrier's lung	Animal fur dust	Animal pelts
Animal handler's lung; laboratory worker's lung Insect proteins	Rats, gerbils	Urine, serum, pelts, proteins
Miller's lung	Sitophilus granarius (i.e., wheat weevil)	Dust-contaminated grain
Lycoperdonosis	Puffball spores	Lycoperdon puffballs


Assessment of suspected HP

- History
 - Exposure
 - But 60% lack clear exposure
- Examination
 - "Squawks" on auscultation
- Imaging
 - Acute centrilobular nodules, ground glass +/- gas trapping
 - Chronic fibrosis, mosaicism, bronchocentric distribution


HRCT pointers to chronic hypersensitivity pneumonitis

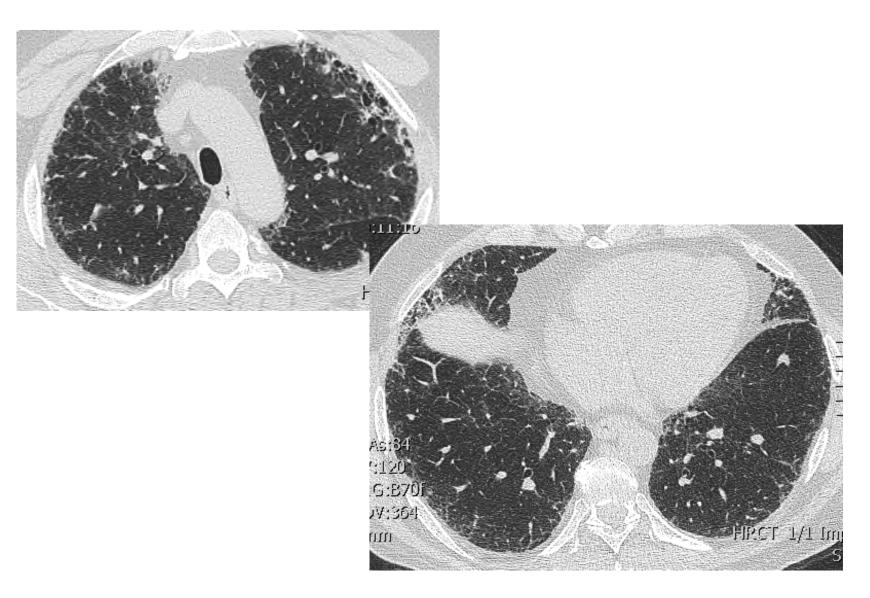
- Lobules of decreased attenuation *in spared (non-fibrotic) lung*
- Unusual distribution of fibrosis, particularly vague bronchocentricity in upper lobes
- Coexistent subacute changes indistinct relatively low attenuation centrilobular nodules (rare)

Lobules of decreased attenuation in spared lung

Unusual distribution of fibrosis, particularly vague bronchocentricity in upper lobes

Chronic hypersensitivity with UIP features

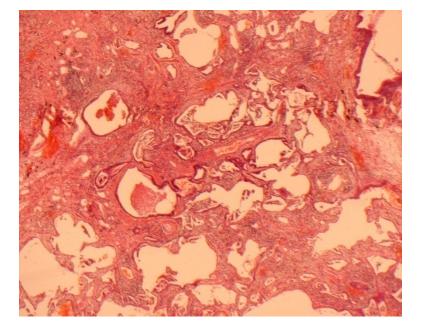
Assessment of suspected HP

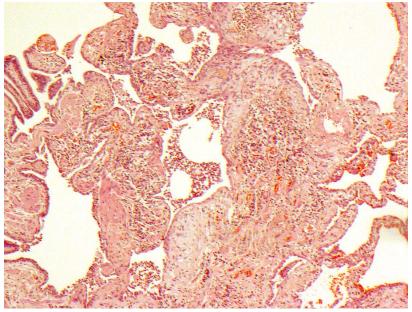

- History
 - Exposure
 - But 60% lack clear exposure
- Examination
 - "Squawks" on auscultation
- Imaging
 - Acute centrilobular nodules, ground glass +/- gas trapping
 - Chronic fibrosis, mosaicism, bronchocentric distribution
- Bronchoscopy
 - Lymphocytes >?20%
- Biopsy
 - Airway centred granulomata, chronic cellular bronchiolitis, chronic interstitial inflammatory cell infiltrate
- Blood testing
 - Specific circulating antibodies

Case History

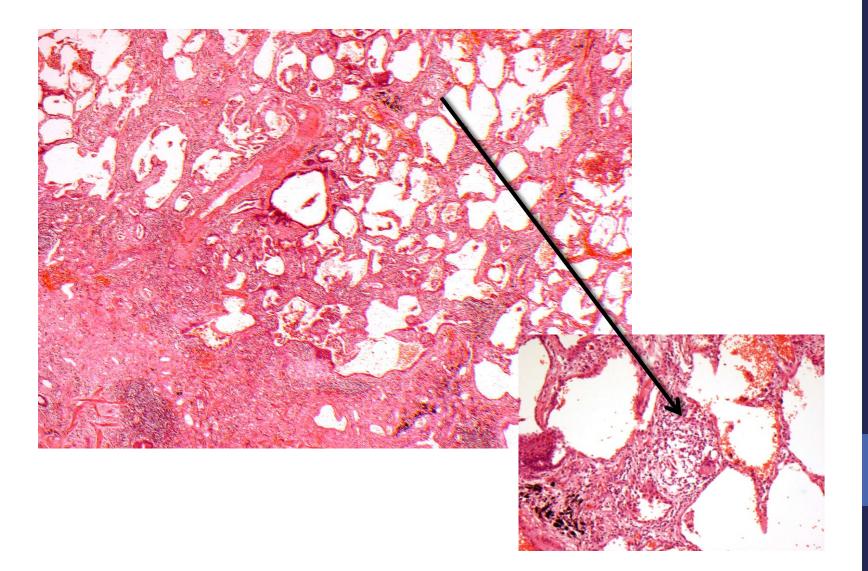
- 55 year old practising primary care physician
- 6 months mild exertional dyspnoea
- No exposures
- Lifelong non-smoker
- No clubbing
- Occasional bibasal crepitations

	Pred LL	Pred UI	Test1	% Pred	S.R.
Date			01/06/11		
FEV 1	2.76	4.43	2.98	82.9	-1.21
FVC	3.55	5.55	3.77	82.9	-1.28
TLCOSB	7.89	12.53	6.54	64.0	-2.59
TLCOc	7.89	12.53	6.25	61.3	-2.79
VA	6.64	6.64	4.66	70.1	
KCO	1.02	1.90	1.40	96.1	-0.21
KCOc	1.02	1.90	1.34	92.0	-0.43


Broncho-alveolar lavage


	BRONCHOALVEOLAR LAVAGE REPORT			
	Volume in:	-	Volume out:	-
	Volume Received:	98ml	Total Cell Conc.	0.221 x10 ⁶ /ml
	Total Cells counted	300	Cell Viability %	78
		Cells Counted	8	Normal Range
	Macrophages	150	50	>80%
	Lymphocytes	112	37.3	<u><</u> 14%
	Neutrophils	18	6	<u>≤</u> 4%
	Eosinophils	15	5	<u>≺</u> 3%
	Mast Cells	1	0.3	<u><</u> 0.5%
	Ciliated Epithelial Cells	2	0.7	
	Squamous Epithelial Cells	2	0.7	
	Others	0	0	
	Debris/Mucus	+		
Lymphocytosis	RBC	++		
	Inclusion Bodies	-		
	Pigmented Maschehages	-		

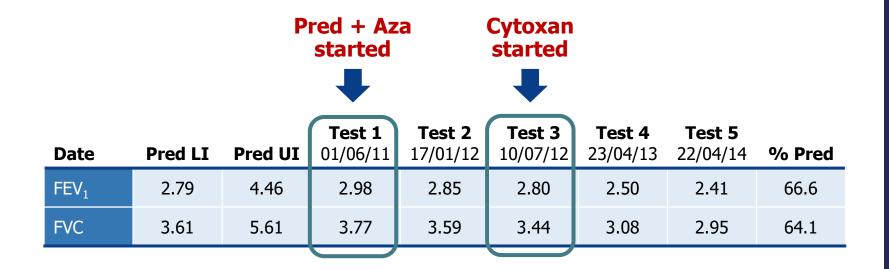
BRONCHOALVEOLAR LAVAGE REPORT


Comments: Lymphocytosis. Mild Neutrophilia. Mild Eosinophilia

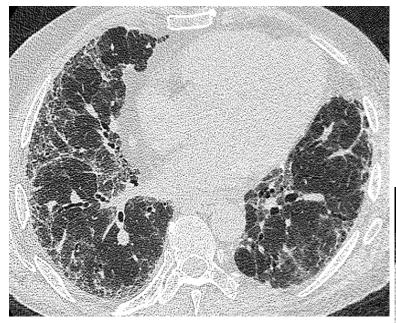
Surgical Lung Biopsy

Surgical Lung Biopsy

• MDT diagnosis – probable fibrotic hypersensitivity pneumonitis


- Diagnosis probable fibrotic hypersensitivity pneumonitis
- Treated with intravenous methylprednisolone followed by prednisolone 10 mg daily, azathioprine 150 mg daily and NAC
- After 12 months, worsening breathlessness and 14% decline in FVC

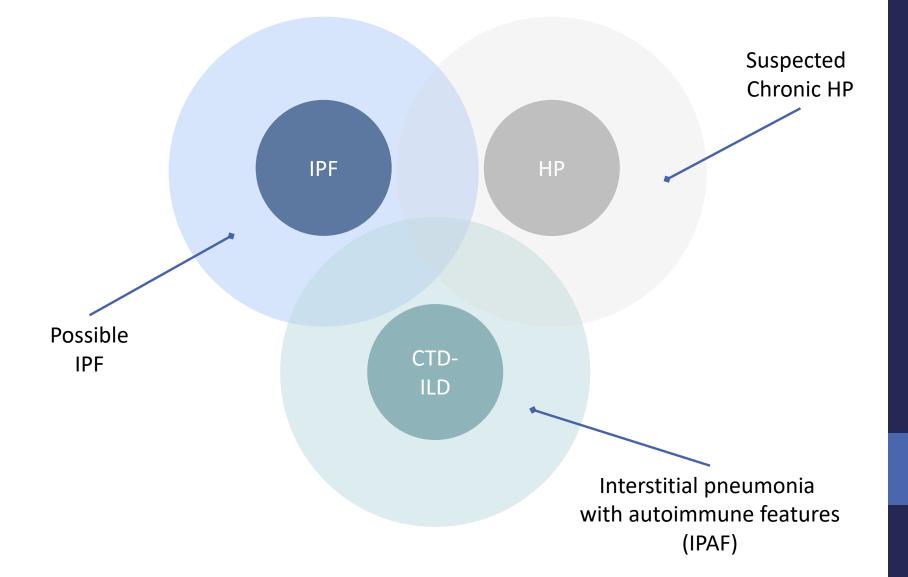
- Diagnosis probable fibrotic hypersensitivity pneumonitis
- Treated with intravenous methylprednisolone followed by prednisolone 10 mg daily, azathioprine 150 mg daily and NAC
- After 12 months, worsening breathlessness and 14% decline in FVC
- Repeat bronchoscopy 28% lymphocytes

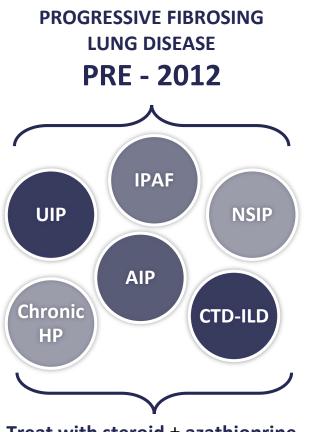

- Diagnosis probable fibrotic hypersensitivity pneumonitis
- Treated with intravenous methylprednisolone followed by prednisolone 10 mg daily, azathioprine 150 mg daily and NAC
- After 12 months, worsening breathlessness and 14% decline in FVC
- Repeat bronchoscopy 28% lymphocytes
- Treatment changed to intravenous cyclophosphamide 600 mg/m² body surface area every 4 weeks for 6 doses.

Follow up lung function


- Further MDT discussion. Revised diagnosis to probable IPF based on longitudinal disease behaviour
- Treatment started with pirfenidone 801 mg t.i.d.
- Gradual decline in lung function Dlco 22% predicted
- As of January 2016 on active transplant waiting list

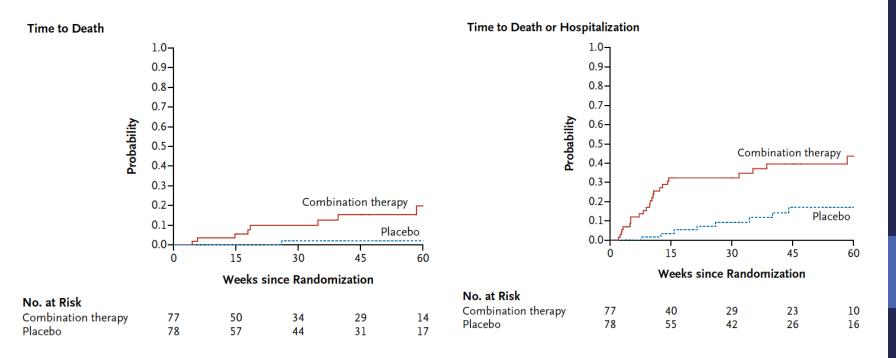
January 2016




June 2016

Fibrotic ILD re-visualised

Post-2012: A new era in diagnosing and treating pulmonary fibrosis



Treat with steroid ± azathioprine

ORIGINAL ARTICLE

Prednisone, Azathioprine, and N-Acetylcysteine for Pulmonary Fibrosis

The Idiopathic Pulmonary Fibrosis Clinical Research Network*

A new era for IPF

Sign up for Alert | Forward | Subscribe | Search

The NEW ENGLAND JOURNAL of MEDICINE

This Week at NEJM.org | May 29, 2014

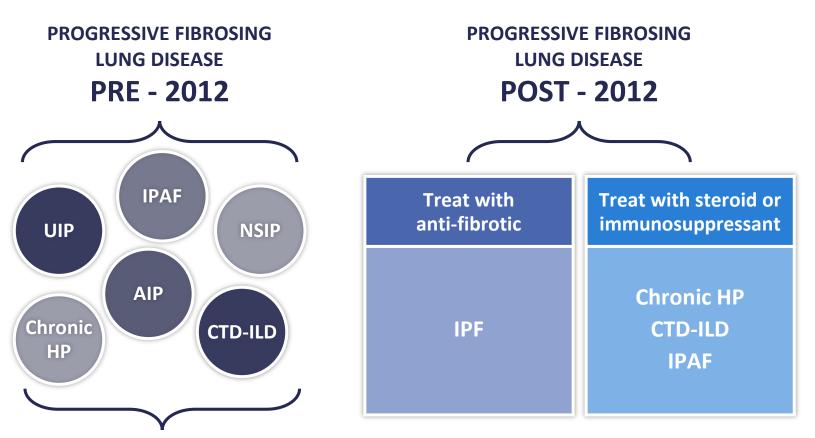
↓ Listen to the Weekly Audio Summary

ORIGINAL ARTICLES

Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis

L. Richeldi and Others | N Engl J Med 2014;370:2071-2082 | Published Online May 18, 2014

🗢 CME 🔍 Comments


A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis

T.E. King, Jr., and Others | N Engl J Med 2014;370:2083-2092 | Published Online May 18, 2014

Randomized Trial of Acetylcysteine in Idiopathic Pulmonary Fibrosis

The Idiopathic Pulmonary Fibrosis Clinical Research Network | N Engl J Med 2014;370:2093-2101 | Published Online May 18, 2014

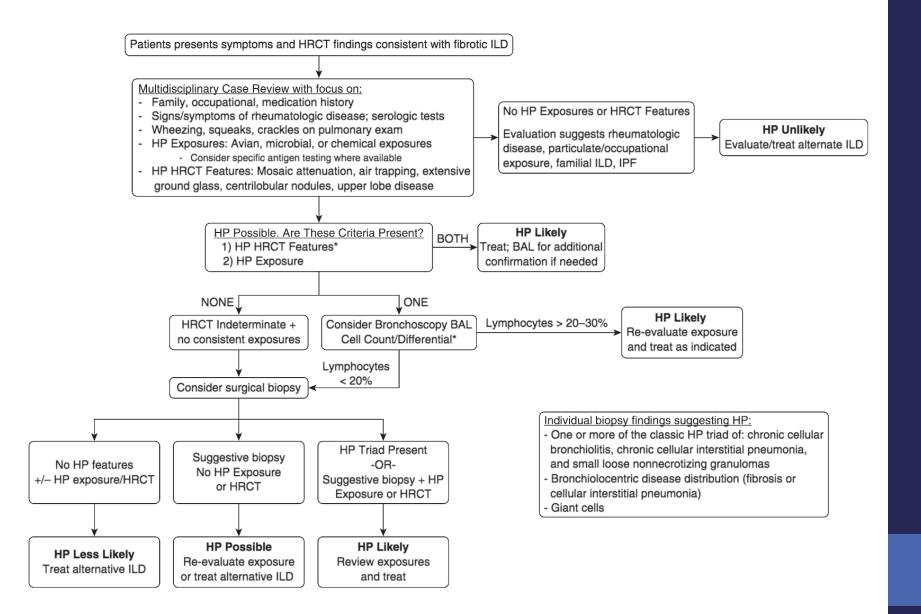
Post-2012: A new era in diagnosing and treating pulmonary fibrosis

Treat with steroid ± azathioprine

Defining chronic HP

Diagnostic Confidence for Hypersensitivity Pneumonitis

Definite


- 1. Probable/Definite histopathologic likelihood with,
 - a. Antigenic history, OR
 - b. Definite HRCT likelihood, OR
 - b. Probable HRCT likelihood and Lymphocytosis
- 2. Probable/Definite HRCT likelihood, Lymphocytosis & Antigenic history (absent biopsy)

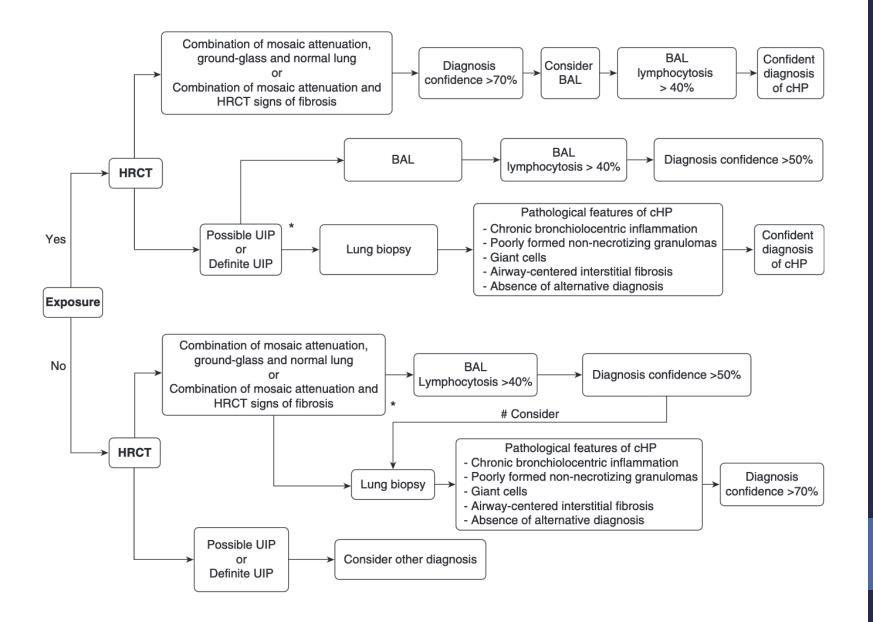
Highly Probable

- 1. Probable/Definite HRCT likelihood with,
 - a. Antigenic history (absent histopathology), OR
 - b. Lymphocytosis (absent histopathology), OR
 - c. Possible histopathologic likelihood with lymphocytosis or antigenic history, OR,
 - d. Probable histopathologic likelihood
- 2. Probable/Definite histopathologic likelihood with Lymphocytosis and possible HRCT likelihood

Probable

- 1. Lymphocytosis & Antigenic history with a possible HRCT likelihood (with at least possible histopathologic likelihood)
- 2. Lymphocytosis or Antigenic history with a possible histopathologic & HRCT likelihood
- 3. Lone probable/definite histopathologic likelihood (with at least possible HRCT likelihood)
- 4. Lone probable/definite HRCT likelihood (with at least possible histopathologic likelihood)
- 5. Possible histopathologic likelihood with lymphocytosis or Antigenic history (with at least possible HRCT likelihood)

ORIGINAL ARTICLE


Identification of Diagnostic Criteria for Chronic Hypersensitivity Pneumonitis An International Modified Delphi Survey

Julie Morisset¹, Kerri A. Johannson², Kirk D. Jones³, Paul J. Wolters⁴, Harold R. Collard⁴, Simon L. F. Walsh⁵, Brett Ley⁴, and the HP Delphi Collaborators

¹Département de Médecine, Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada; ²Department of Medicine, University of Calgary, Calgary, Alberta, Canada; ³Department of Pathology and ⁴Department of Medicine, University of California, San Francisco, San Francisco, California; and ⁵Department of Radiology, King's College, Hospital National Health Service Foundation Trust, London, United Kingdom

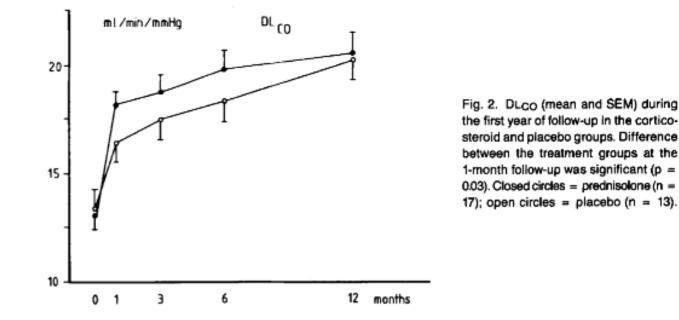
Characteristics	Expert Interview (n = 11)	Modified Delphi (n = 45)
Response rate, <i>n</i> /total (%) Female, <i>n</i> (%) Country, <i>n</i> (%)	11/15 (73. 3) 4 (36.4)	45/53 (84.9) 14 (31.1)
Australia	—	3 (6.7) 1 (2.2)
Belgium Brazil	_	1 (2.2)
Canada France	1 (9.1)	5 (11.1) 1 (2.2)
Germany	1 (9.1)	4 (8.9)
Greece Italy	1 (9.1)	1 (2.2) 5 (11.1)
Japan	_	1 (2.2)
Mexico The Netherlands	1 (9.1) 1 (9.1)	1 (2.2) 1 (2.2)
Spain		1 (2.2)
United Kingdom United States	6 (54.5)	3 (6.7) 17 (37.8)
Years in clinical practice, median (IQR) % of clinical time dedicated to ILD, median (IQR)	16 (13–21) 75 (50–90)	20 (10–25) 61 (40–82)

Definition of abbreviations: ILD = interstitial lung disease; IQR = interquartile range.

Morrisett et al AJRCCM 2018

TREATING CHRONIC HYPERSENSITIVITY PNEUMONITIS

Remove the antigen...

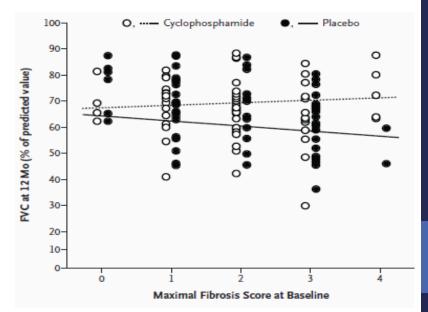


Corticosteroids

Effect of Corticosteroid Treatment on the Recovery of Pulmonary Function in Farmer's Lung¹⁻³

JOUKO I. KOKKARINEN, HANNU O. TUKIAINEN, and ERKKI O. TERHO

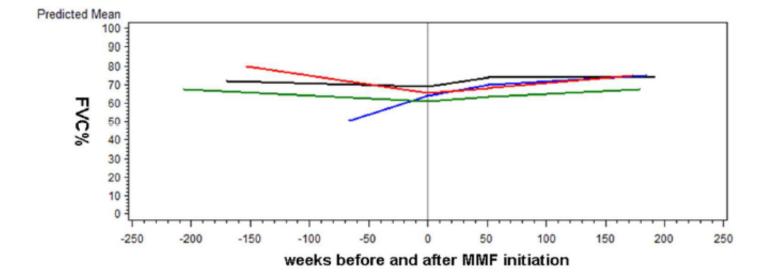
AM REV RESPIR DIS 1992; 145:3-5


Cyclophosphamide

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Cyclophosphamide versus Placebo in Scleroderma Lung Disease


Donald P. Tashkin, M.D., Robert Elashoff, Ph.D., Philip J. Clements, M.D., M.P.H., Jonathan Goldin, M.D., Ph.D., Michael D. Roth, M.D., Daniel E. Furst, M.D., Edgar Arriola, Pharm.D., Richard Silver, M.D., Charlie Strange, M.D.,
Marcy Bolster, M.D., James R. Seibold, M.D., David J. Riley, M.D., Vivien M. Hsu, M.D., John Varga, M.D., Dean E. Schraufnagel, M.D., Arthur Theodore, M.D.,
Robert Simms, M.D., Robert Wise, M.D., Fredrick Wigley, M.D., Barbara White, M.D.,
Virginia Steen, M.D., Charles Read, M.D., Maureen Mayes, M.D., Ed Parsley, D.O., Kamal Mubarak, M.D., M. Kari Connolly, M.D., Jeffrey Golden, M.D.,
Mitchell Olman, M.D., Barri Fessler, M.D., Naomi Rothfield, M.D., and Mark Metersky, M.D., for the Scleroderma Lung Study Research Group*

Brompton cyclophosphamide experience

Disease	Number of pat	tients	Mortality withir first dose	n one year of	Mean FVC chan cyclophospham		%TLCO change fo cyclophosphami	
	Period 1	Period 2	Period 1	Period 2	Period 1	Period 2	Period 1	Period 2
Scleroderma	21	12	0%	0%	-0.43%	-1.37%	-0.17%	4.61%
Mixed connective tissue disease	0	4	NA	0%	NA	2.88%	NA	2.02%
Idiopathic myositides including antisynthetase	8	9	0%	0%	7.22%	11.46%	-0.94%	11.25%
Unclassfiable connective tissue disease	32	15	0%	5%	-0.81	5.98%	-6.45%	0.26%
Chronic hypersensitivity pneumonitis	15	26	26%	19%	-8.90%	-1.24%	5.83%	-5.66%
Unclassifiable interstitial lung disease	8	15	38%	26%	0.97%	2.00%	-6.28%	-2.73%

Mycophenolate mofetil

Red line=RA, Black line=SSc, Blue line=PM/DM, Green line=lung dominant-CTD

Fischer et al J Rheumatol 2013

Use of Mycophenolate Mofetil or Azathioprine for the Management of Chronic Hypersensitivity Pneumonitis

Julie Morisset, MD; Kerri A. Johannson, MD; Eric Vittinghoff, PhD; Carlos Aravena, MD; Brett M. Elicker, MD; Kirk D. Jones, MD; Charlene D. Fell, MD; Helene Manganas, MD; Bruno-Pierre Dubé, MD; Paul J. Wolters, MD; Harold R. Collard, MD, FCCP; Christopher J. Ryerson, MD; and Brett Ley, MD

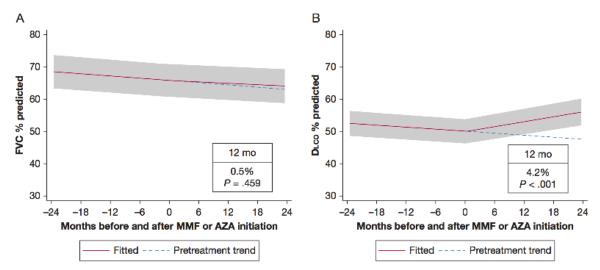
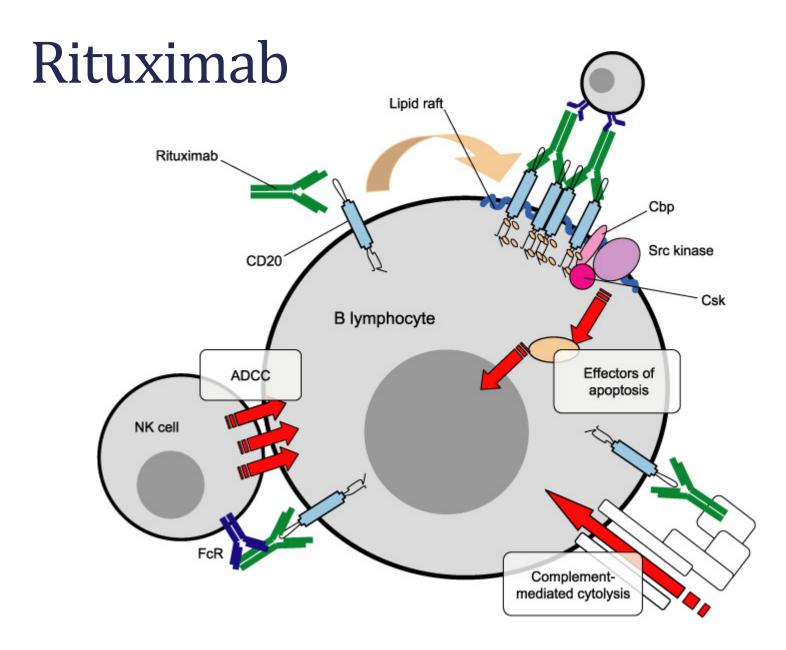
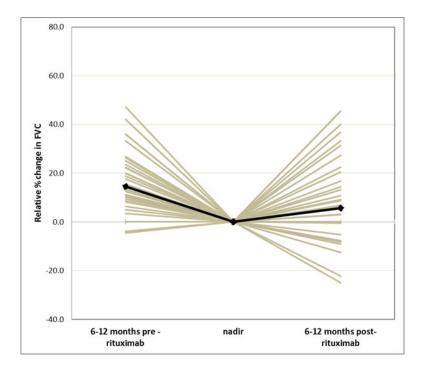
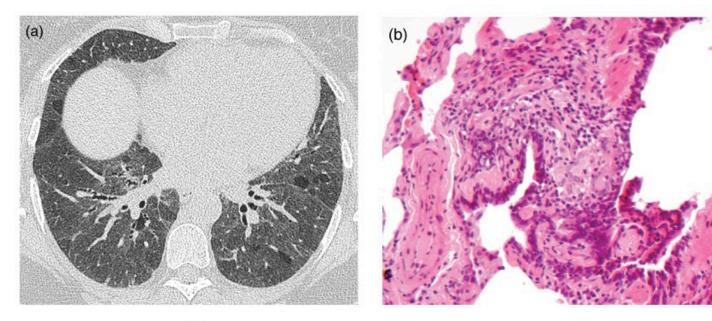
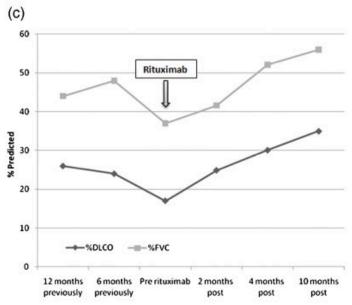



Figure 2 – Mixed-effects model estimates for FVC % predicted and DLCO % predicted before and after initiation of mycophenolate or azathioprine. The gray shading indicates the 95% CI. DLCO = diffusion capacity of the lung for carbon monoxide. See Figure 1 legend for expansion of other abbreviations.

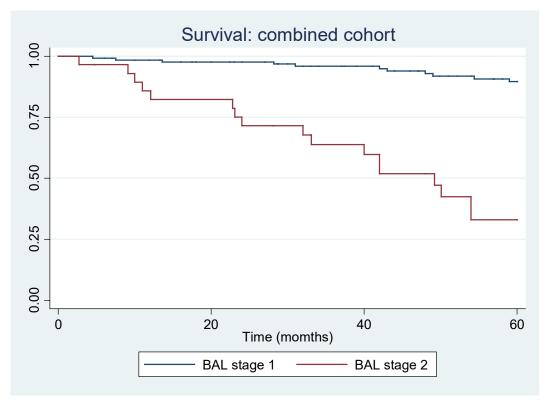


ORIGINAL ARTICLE


Rituximab in severe, treatment-refractory interstitial lung disease


GREGORY J. KEIR,^{1,2} TOBY M. MAHER,¹ DAMIEN MING,¹ REZA ABDULLAH,¹ ANGELO dE LAURETIS,³ M. WICKREMASINGHE,⁴ ANDREW G. NICHOLSON,¹ DAVID M. HANSELL,¹ ATHOL U. WELLS¹ AND ELISABETTA A. RENZONI¹

¹Royal Brompton Hospital, ⁴St Mary's Hospital, London, UK, ²Princess Alexandra Hospital, Brisbane, Queensland, Australia, and ³Department of Pneumonology, Carlo Poma Hospital, Mantua, Italy


n :	= 50
Ag	je 52.5 (± 10.9)
Fe	male (33)
ILC	D diagnosis
	CTD-ILD (33)
	 Idiopathic inflammatory myopathy (10)
	 Systemic sclerosis (8)
	 Undifferentiated connective tissue disease (9)
	 Mixed connective tissue disease (2)
	 Rheumatoid arthritis (2)
	 Systemic lupus erythematosus (1)
	- Sjogren's (1)
Hy	persensitivity pneumonitis (6)
	Other ILDs
-	- Drug-induced (3)
-	- Vasculitis (2)
	 Desquamative interstitial pneumonia (non-smokers) (2
	 Cryptogenic organising pneumonia (1)
	 Smoking related (1)
	 Acute interstitial pneumonia (1)
	- Unclassifiable (1)
	Imonary function tests [†]
	DL _{co} % 24.5 (11.4–67.0)
	FEV ₁ % 49.0 (24.7–92.0)
	FVC % 44.0 (24.0–99.0)
	PaO _{2 kPa} 8.3 (5.1–10.8)

Deciding whom to treat

BAL Lymphocytes > 20% but neutrophils < 10%

Wells au et al (unpublished)

Anti-fibrotic therapy?

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

Fin	nd Studies 🔻	About Studies -	Submit Studies 🔻	Resources -	About Site 🔻

Home > Study Record Detail

Efficacy and Safety of Nintedanib in Patients With Progressive Fibrosing Interstitial Lung Disease (PF-ILD) (PF-ILD)

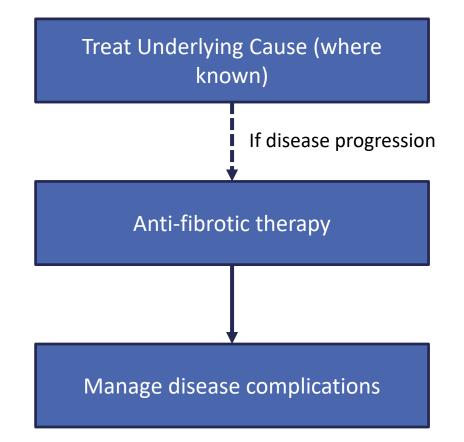
This study is currently recruiting participants. See Contacts and Locations Verified June 2017 by Boehringer Ingelheim Sponsor: Boehringer Ingelheim Information provided by (Responsible Party): Boehringer Ingelheim ClinicalTrials.gov Identifier: NCT02999178 First received: December 19, 2016 Last updated: June 26, 2017 Last verified: June 2017 History of Changes

Transplant

Current treatment paradigm

Idiopathic Pulmonary Fibrosis

Anti-fibrotic therapy


Fibro-inflammatory ILD

Immunosuppressant therapy

Manage disease complications

Manage disease complications

The future treatment of fibrotic ILD?

Summary

- Chronic hypersensitivity pneumonitis is frequently challenging to diagnose
- A proportion of cases overlap with IPF in terms of disease behaviour and outcome
- Absence of lymphocytosis predicts a poorer outcome and response to treatment
- Best therapy remains to be defined but is likely to be corticosteroids +/- immunosuppressant therapy
- The outcome of trials with anti-fibrotic drugs are awaited

Questions?