

IO 2011 DAVANUE DISTRICTS ON DESCRIPTION

Cinquanta sfumature di grigio

Antonella Caminati

U.O. di Pneumologia e Terapia Semi Intensiva Servizio di Fisiopatologia Respiratoria ed Emodinamica Polmonare Osp. San Giuseppe – MultiMedica IRCCS Milano

First evaluation

AL, woman, 47 years old, clerk Ex smokers (5 p/y), stop on 1990 Chronic exertional dyspnoea (NHYA II)

Comorbidities:

From the age of 15 yrs, rheumatoid factor positive; rheumatological disease excluded, only follow-up

Physical examination:

- Velcro crackles on lung auscultation
- Normal pulse, HR 68
- Normal blood pressure 120/70
- No signs of collagen vascular disease

Lung function measurements

Parameter	Absolute value	% of predicted
FVC	2.11L	71%
FEV1	1.77L	70%
FEV1/FVC		81%
TLC	3.61L	76%
RV	1.42L	86%
DLCO	8.8 mL/mmHg/min	37%

ABG on room air: pO2 93 mmHg, pCO2 36 mmHg

6MWT on room air: meters 500, Sat.O2 97% → 90%

Our evaluation

					*
	2010	2015	Feb 2016	Apr-2016	Jul-2016
FVC	2.25	2.09	1.91	1.89	2.11
FVC %	72	69	64	63	71
FEV1	2.03	1.86	1.67	1.66	1.77
FEV1 %	75	72	65	65	70
FEV1/FVC		85	105	81	81
TLC %		82		77	76
DLCO %		36	51	60	37

Imaging

What's the radiological prevalent pattern?

- Cystic pattern
- Ground glass with mosaic attenuation
- Mixed cystic and ground glass pattern
- NSIP pattern

What's your radiological diagnosis?

- Lymphangioleiomyomatosis
- Pulmonary Langherans cell histiocytosis
- Cystic lung disease
- Other diagnosis

The patient was followed at another hospital for cystic lung disease and was adressed to our institution in suspicion of lymphangioleiomyomatosis

Classification of Diffuse Cystic Lung Diseases

Gupta N et al, AJRCCM 2015

1. Neoplastic	Lymphangioleiomyomatosis (S-LAM or TSC-LAM) Pulmonary Langerhans cell histiocytosis, and non-Langerhans cell histiocytoses including Erdheim Chester disease Other primary and metastatic neoplasms such as sarcomas, adenocarcinomas, pleuropulmonary blastoma, etc.	5. Associated with interstitial lung diseases	Hypersensitivity pneumonitis Desquamative interstitial pneumonia
2. Genetic Developmental Congenital	Birt-Hogg-Dubé syndrome Proteus syndrome, neurofibromatosis, Ehlers-Danlos syndrome Congenital pulmonary airway malformation, bronchopulmonary dysplasia,etc.	6. Smoking related	Pulmonary Langerhans cell histiocytosis Desquamative interstitial pneumonia
3. Associated with lympho- proliferative disorders	Lymphocytic interstitial pneumonia Follicular bronchiolitis Sjögren syndrome Amyloidosis Light chain deposition disease	7. Other/ Miscellaneous	Post-traumatic pseudocysts Fire-eater's lung Hyper IgE syndrome
4. Infectious	Pneumocystis jiroveci Staphylococcal pneumonia Recurrent respiratory papillomatosis Endemic fungal diseases Paragonimiasis	8. DCLD mimics	Emphysema Alpha-one antitrypsin deficiency Bronchiectasis Honeycombing seen in late stage scarring interstitial lung diseases

What's LAM?

LAM is a rare systemic neoplastic disease characterized by progressive proliferation of LAM-cells

LAM occurs in patients with and without evidence of TSC, a syndrome resulting from mutations in the *TSC1* or *TSC2* tumor suppressor genes.

LAM cells in the lung and angiomyolipomas (AMLs) from patients without overt TSC contain mutations in the TSC genes.

Is LAM a tumor?

LAM pathogenic mechanisms mirror those of many forms of human cancer

- Mutations
- Inappropriate growth and survival
- Metastasis via blood and lymphatic circulation
- Infiltration
- Tissue destruction
- Sex steroid sensitivity

LAM has been included in PEComas

But the source of LAM cells is still unknown

(Uterus? Kidneys? Lymphatics?)

LAM cells show no atypia

Henske EP, McCormack FX AJRCCM 2012 Harari S et al, ERJ 2015

- Numerous thin-walled lung cysts
- These cysts usually range from 2 mm to 5 cm
- Their size tends to increase with disease progression

Is HRCT of our patient typical for LAM?

Yes
No
I don't know

PLCH

- Smokers
- Nodules in early disease
- Basal sparing

PLCH: a neoplastic or a reactive condition?

Is PLCH a clonal proliferative process or a reactive process induced by cigarette smoke ?

The American Journal of Surgical Pathology 25(5): 630-636, 2001

© 2001 Lippincott Williams & Wilkins,

Pulmonary Langerhans' Cell Histiocytosis

Molecular Analysis of Clonality

Samuel A. Yousem, M.D., Thomas V. Colby, M.D., Yuan-Yuan Chen, B.S., Wen-Gang Chen, B.S., and Lawrence M. Weiss, M.D.

Mutations in PLCH

- BRAF mutations have been identified in up to 67% of cases of PLCH
- Identical but mutually exclusive MAPK/ ERK pathway mutations (BRAF, MAP2K1) were found supporting a neoplastic/clonal origin

Chilosi M et al, Leuk Lymphoma 2014 Kamionek M et al, Histopathology 2016

NRAS mutations have been found
 BRAF and NRAS mutations can be present in different areas within the same lung lesion supporting a polyclonal nature of LCs

Mourah S et al, ERJ 2016

PLCH: a neoplastic or reactive condition?

At least a proportion of PLCH is a cigarette smoke induced or promoted dendritic cell neoplasm that is associated with a prominent immune-inflammatory component

Gupta N et al, AJRCCM 2015

Role of smoking

- Smoking induces accumulation of CD1a+ cells in the lungs
- Smoking stimulates local production of cytokines and osteopontin, which play a role in the recruitment, differentiation and activation of dendritic cells

LAM

PLCH

Others cystic lung diseases – BHD etc...

Colombat et al

- Birt Hogg Dube
 - Autosomal dominant defect in the folliculin gene
 - Lung cysts, renal tumours and fibro-folliculomas
- LIP
- metastatic endometrial sarcoma
- light chain deposition
 - patchy deposition of eosinophilic material in alveolar walls, small airways, and vessels

Our patient...

Lab tests

Lab tests were within normal range

Parameter	Results
Antinuclear antibody	Positive 1:320
ENA	Negative
Rheumatoid factor	Positive
Anti-CCP	Negative

Rheumatological evaluation:

No rheumatological disease

Schirmer test: negative

Bronchoscopy

Macroscopic assessment showed no airway abnormality

Parameter	BAL differential cell count
Total cell count	280000 /mm3
Macrophages	24%
Neutrophils	8%
Lymphocites	68%
CD4/CD8	2.3%

BAS: microbiological analysis were all negative no atypical cells

New tests were performed:

- Serum VEGF-D levels: 306 ng/mL
- Abdominal CT: normal
- Brain MRI: normal

What's the role of serum VEGF-D level in LAM?

- VEGF-D test is diagnostic in patients with compatible cystic changes on lung CT scan
- Sensitivity of test is low
- Serum VEGF-D levels seem to vary according to disease manifestations
- All the answers are correct

LAM – Biomarkers VEGF-D

2006	Seyama K et al.	VEGF-D is increased in serum of patients with LAM
2008	Young et al.	VEGF-D serum levels are higher in LAM than in similar cystic or chylous lung diseases
2009	Glasgow et al	VEGF-D levels in LAM reflect lymphatic involvement
2010	Young et al.	VEGF-D level higher than 800 pg/mL in a woman with typical changes on high- resolution CT scan is diagnostically specific for LAM, and identifies LAM in women with TSC
		with ise

2016 AMERICAN THORACIC SOCIETY DOCUMENTS

> Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines: Lymphangioleiomyomatosis Diagnosis and Management

Francis X. McCormack, Nishant Gupta, Geraldine R. Finlay, Lisa R. Young, Angelo M. Taveira-DaSilva, Connie G. Glasgow, Wendy K. Steagall, Simon R. Johnson, Steven A. Sahn, Jay H. Ryu, Charlie Strange, Kuniaki Seyama, Eugene J. Sullivan, Robert M. Kotloff, Gregory P. Downey, Jeffrey T. Chapman, MeiLan K. Han, Jeanine M. D'Armiento, Yoshikazu Inoue, Elizabeth P. Henske, John J. Bissler, Thomas V. Colby, Brent W. Kinder, Kathryn A. Wikenheiser-Brokamp, Kevin K. Brown, Jean F. Cordier, Cristopher Meyer, Vincent Cottin, Jan L. Brozek, Karen Smith, Kevin C. Wilson, and Joel Moss; on behalf of the ATS/JRS Committee on Lymphangioleiomyomatosis VEGF-D testing is recommended to establish the diagnosis of LAM

LAM diagnosis

Definite LAM: characteristic lung HRCT + any of the followings

ERS guidelines 2010

- Tuberous Sclerosis Complex
- Chylous effusions
- Angiomyolipomas
- Lymphatic involvement

ATS/JRS guidelines 2016

- ✓ ✓ ✓
- Serum VEGFD levels ≥ 800 pg/mL

Characteristic lung HRCT

Numerous thin-walled lung cysts distributed diffusely throughout the lungs without sparing of lung bases

Johnson SR et al, ERJ 2010 McCormack FX et al, AJRCCM 2016

LAM – Biomarkers VEGF-D

- Serum VEGF-D testing has a low false positive rate but a high false negative rate: a serum VEGFD value < 800 pg/mL does not exclude LAM.
- Serum VEGF-D can vary according to disease manifestations. It is usually higher in patients with lymphatic manifestations.

New biomarkers are still needed for diagnosis, follow-up, and designing of clinical trials

What is the next step which should be taken?

- Lung biopsy
- Cryobiopsy
- Clinical-radiological follow-up
- Medical therapy

VATS was performed

Samples were taken from upper and lower lobe of the left lung

Diffuse lymphoplasmacytic interstitial infiltration

More intense peribronchiolar lymphocytic infiltration

Cellular/follicular bronchiolitis

Giant cells

A Schaumann body

Small foci of organizing pneumonia and foamy macrophages

Cellular NSIP/LIP with giant cells and micro-granulomas

Histology:

Diffuse lymphoplasmacytic interstitial infiltration, more accentuated around the bronchioles with aspects of follicular/cellular bronchiolitis, is present

There are many interstitial micro-granulomas in the form of giant cells that incorporate cholesterol cleft, Schaumann bodies and aspect of organizing pneumonia

Conclusion: Pattern of cellular NSIP/LIP with microgranulomas

What's your definitive diagnosis?

- IPAF
- Hypersensitivity pneumonitis
- NSIP
- Organizing pneumonia

<u>The criteria for IPAF</u> are (1) the presence of an interstitial pneumonia (by HRCT or surgical lung biopsy) and (2) the exclusion of alternative etiologies and (3) incomplete features of a defined CTD and (4) at least one feature from at least 2 domains (columns A, B, or C).

Table 1. Criteria for Interstitial Pneumonia With Autoimmune Features (IPAF) ^{a,b}			
A. Clinical Domain	B. Serologic Domain	C. Morphologic Domain	
 Raynaud phenomenon Palmar telangiectasia Distal digital fissuring (ie, "mechanics hands") Distal digital tip ulceration Inflammatory arthritis or polyarticular morning joint stiffness >60 min Unexplained digital edema Unexplained fixed rash on the digital extensor surfaces (Gottron sign) 	 ANA titer >1:320, diffuse, speckled, or homogeneous patterns Or ANA nucleolar pattern (any titer) Or ANA centromere pattern (any titer) RF >2 × ULN Anti-CCP Anti-dsDNA Anti-Ro antibodies (SS-A) Anti-La antibodies (SS-A) Anti-La antibodies (SS-B) Anti-Ismith antigen Antiopoisomerase (Scl-70) Anti-tRNA synthetase (eg, Jo-1, PL-7, PL-12 [others are EJ, OJ, KS, Zo, tRS]) Anti-PM-Scl Anti-CADM (MDA-5) 	Radiology features • Suggested NSIP pattern • Suggested OP pattern • Suggested Mixed NSIP/OP pattern • Suggested LIP pattern Histopathology features (SLB) • NSIP • OP • NSIP with OP overlap • LIP • Interstitial lymphoid aggregates with GCs • Diffuse lymphoplasmacytic infiltration (±lymphoid follicles) Multicompartment involvement • Unexplained pleural effusion or thickening • Unexplained pericardial effusion or thickening • Unexplained intrinsic airways disease (by PFT, HRCT, or pathology) • Unexplained pulmonary vasculopathy	

Fischer A et al. Eur Respir J 2015; 46: 976

Fischer A et al. Eur Respir J 2015; 46: 976

Patient reports a previous exposure to molds (up to 2 years before) and parrots (up to 10 years before)

Lab tests

Lab test were within normal range

Parameter	Results
Antinuclear antibody	Positive 1:320
ENA	Negative
Rheumatoid factor	Positive
Anti-CCP	Negative
Precipitins	Positive

Radiological findings of sub-acute HP:

Patchy ground-glass opacities

Lobular areas of decreased attenuation and vascularity and air trapping (mosaic pattern)

Poorly defined centrilobular nodules in approximately 50% of patients

Lung cysts

A small percentage of patients with sub-acute and chronic HP show thin-walled cysts, usually in areas of ground-glass attenuation, resembling those observed in lymphocytic interstitial pneumonia

Selman M et al. Am J Respir Crit Care Med 2012; 186: 314

The presence of autoimmune features in patients with HP has only recently been formally recognized; up to 15% of patients with HP may have associated autoimmune features

There is relationship between autoimmunity and HP

Chung JH et al. AJR 2017; 208:1229 Adegunsoye A et al. Respir Med 2016; 114: 53

Multidisciplinary discussion

HP (but is not possible exclude IPAF)

Patient start steroid treatment

Four months after.....

The importance of details

- HRCT ground glass opacities and mosaic attenuation: not "ancillary" aspects
- Ask the patient!

Time is gentleman