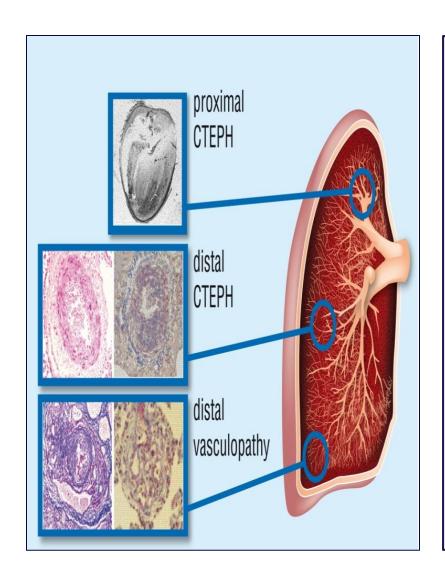
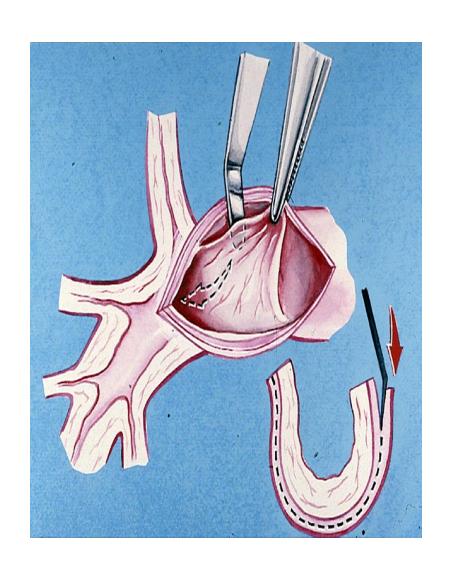
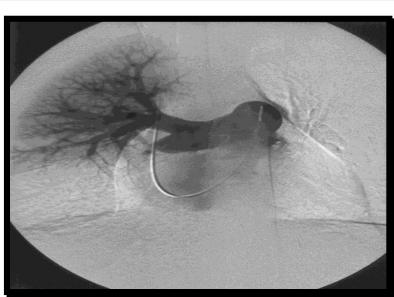
Current management of Chronic Thromboembolic Pulmonary Hypertension Gérald Simonneau National Reference Center for Pulmonary Hypertension South Paris University Hospital Bicêtre and Marie Lannelongue



Mechanisms of pulmonary hypertension in CTEPH




- ➤ Obstruction of proximal pulmonary arteries (main, lobar, segmental) by organized fibrotic clots surgically accessible by **PEA**
- ➤ Obstruction of more distal pulmonary arteries (subsegmental...) by fibrotic clots surgically non accessible when isolated : a role for BPA
- Distal pulmonary vasculopathy with histological findings similar to IPAH: a role for PAH specific therapies

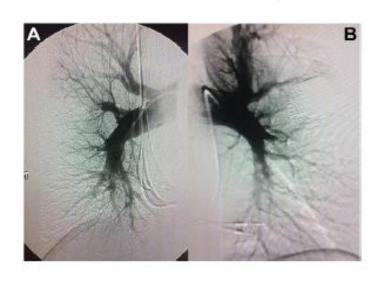

Chronic thromboembolic pulmonary Hypertension is at the crossroads with the development of novel treatment options*

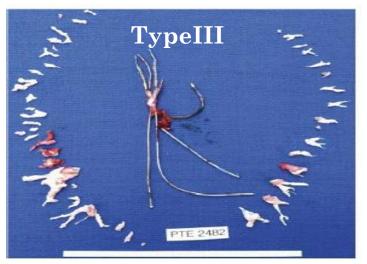
- In operable CTEPH, Pulmonary endarterectomy (PEA) remains the gold standard treatment (60%)
- in non noperable CTEPH, alternative treament options are emerging
 - Riociguat***, a stimulator of the soluble guanylate cyclase is the 1st drug approved for the treatment of CTEPH
 - Balloon pulmonary angioplasty (BPA): Recent results from Japanese groups are very impressive****

Pulmonary endarterectomy remains the treatment of choice of proximal diseases in the absence of contraindication

Pulmonary Endarterectomy: Recent Changes in a Single Institution's Experience of More Than 2,700 Patients Ann Thorac St

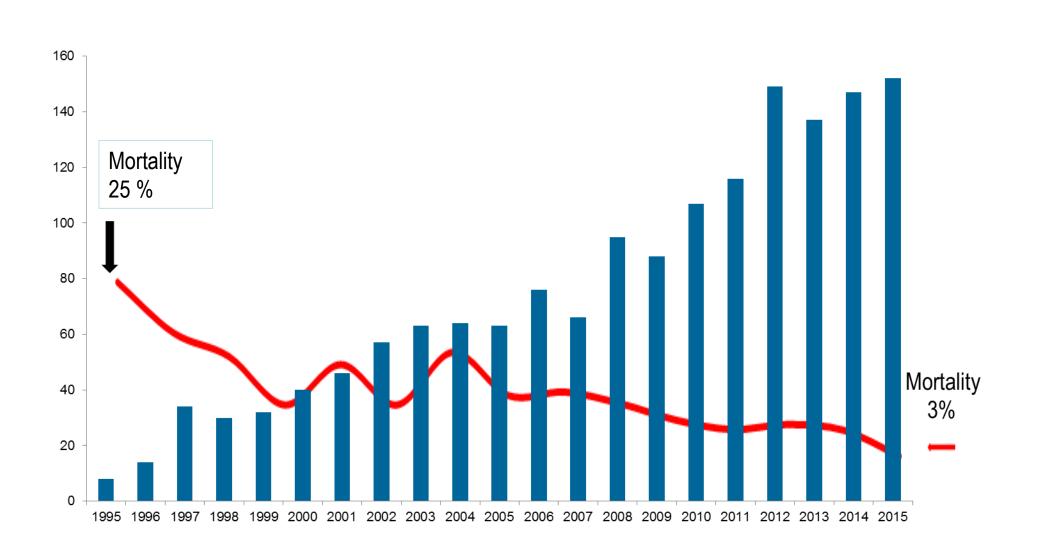
Ann Thorac Surg 2012;94:97–103

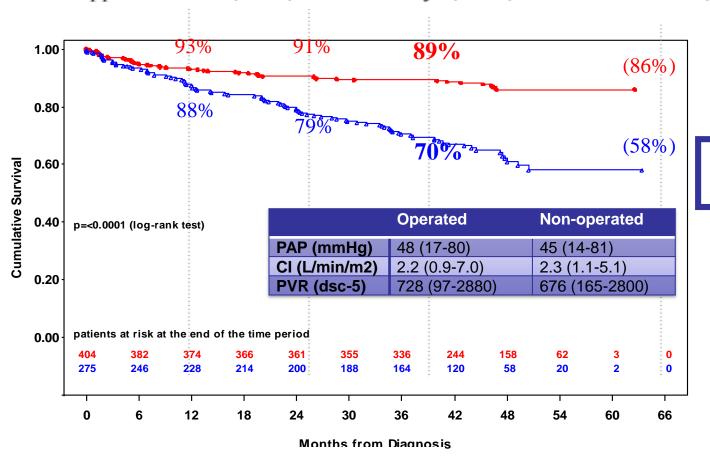

Michael M. Madani, MD, William R. Auger, MD, Victor Pretorius, MD, Naohide Sakakibara, MD, Kim M. Kerr, MD, Nick H. Kim, MD, Peter F. Fedullo, MD, and Stuart W. Jamieson, MD


Divisions of Cardiovascular and Thoracic Surgery and Pulmonary and Critical Care Medicine, University of California San Diego Health Center, San Diego, California

- ➤ Retrospective analysis of 1,500 patients with CTEPH who underwent Pulmonary Endarterectomy at USCD
 - Group 1: 1000 patients operated between 1999 & 2006
 - Group 2: 500 patients operated between 2006 & 2010

Pulmonary Endarterectomy: Recent Changes in a Single Institution's Experience of More Than 2,700 Patients Ann Thorac Surg 2012;94:97–103


Michael M. Madani, MD, William R. Auger, MD, Victor Pretorius, MD, Naohide Sakakibara, MD, Kim M. Kerr, MD, Nick H. Kim, MD, Peter F. Fedullo, MD, and Stuart W. Jamieson, MD


-				
		Group 1	Group 2	
Variable		(n = 1,000)	(n = 500)	p Value
Type I	1	100 (10.0)	60 (12.0)	0.2491
Type II	Proximal	520 (52.0)	190 (38.0)	$< 0.001^{b}$
Type III	More distal	275 (27.5)	197 (39.4)	$< 0.001^{b}$
Type IV	PAH	87 (8.7)	38 (7.6)	0.4897
PVR (dyne	es/sec/cm ⁻⁵)			
Preopera	ative	861.2 ± 446.2	719.0 ± 383	.2 < 0.001
Postoper	rative	294.8 ± 204.2	253.4 ± 148	.6 < 0.001
Intra-hosp	ital mortality	5,2%	2,2%	<0.001

1577 Pulmonary endarterectomies Paris Sud University (1995-2015)

Long-Term Outcome of Patients With Chronic Thromboembolic Pulmonary Hypertension Results From an International Prospective Registry

Marion Delcroix, MD; Irene Lang, MD; Joanna Pepke-Zaba, MD; Pavel Jansa, MD; Andrea M. D'Armini, MD; Repke Snijder, MD; Paul Bresser, MD; Adam Torbicki, MD; Sören Mellemkjaer, MD; Jerzy Lewczuk, MD; Iveta Simkova, MD; Joan A. Barberà, MD; Marc de Perrot, MD; Marius M. Hoeper, MD; Sean Gaine, MD; Rudolf Speich, MD; Miguel A. Gomez-Sanchez, MD; Gabor Kovacs, MD; Xavier Jaïs, MD; David Ambroz, MD; Carmen Treacy, BSc; Marco Morsolini, MD; David Jenkins, MD; Jaroslav Lindner MD; Philippe Dartevelle, MD; Eckhard Mayer, MD; Gérald Simonneau, MD

Surgery (PEA) n=404

Medical Tt ERA/PDE5i N=275

Circulation 2016

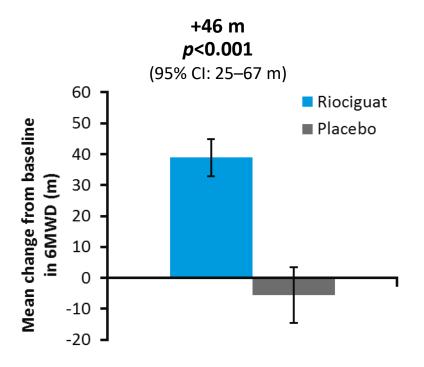
Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension

Hossein-Ardeschir Ghofrani, M.D., Andrea M. D'Armini, M.D., Friedrich Grimminger, M.D., Marius M. Hoeper, M.D., Pavel Jansa, M.D., Nick H. Kim, M.D., Eckhard Mayer, M.D., Gerald Simonneau, M.D., Martin R. Wilkins, M.D., Arno Fritsch, Ph.D., Dieter Neuser, M.D., Gerrit Weimann, M.D., and Chen Wang, M.D., for the CHEST-1 Study Group*

New Engl J Med 2013

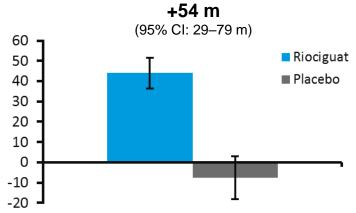
Inclusion criteria in CHEST-1

- Patients with CTEPH adjudicated to be technically inoperable or with persistent PH after PEA
- Age 18–80 years
- 6MWD at baseline 150–450 m
- PVR >300 dyn-sec-cm⁻⁵ and mPAP ≥25 mmHg


Patients excluded if treated with ERAs, prostacyclin analogs, PDE5i, and/or NO donors within 3 months prior to study entry

Maximum Dose allowed: Riociguat 2.5 mg TID

Primary end point at week 16

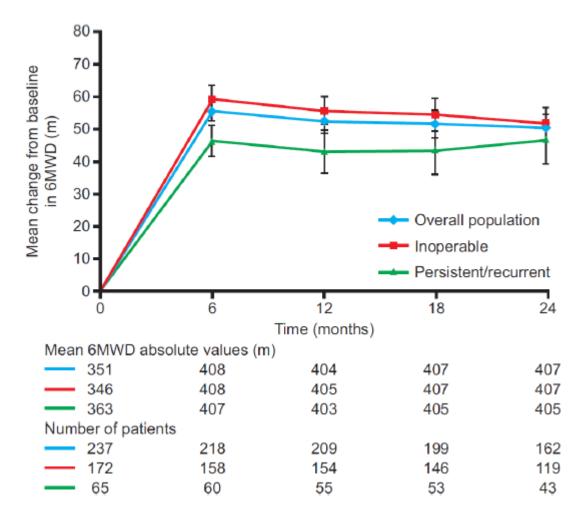

Primary endpoint: entire population (n=173/88)

Population with persistent/ recurrent PH after PEA (n=52/20)

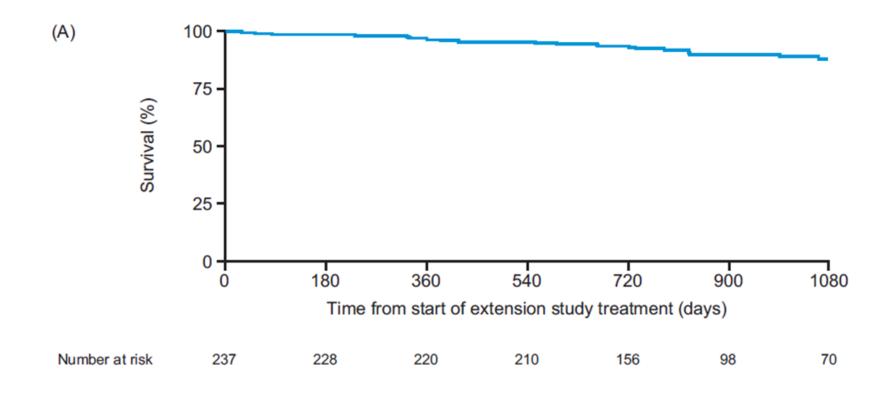
Inoperable population (n=121/68)

6MWD, 6-minute walking distance; PEA, pulmonary endarterectomy.

Significant and meaningful improvement of cardiopulmonary hemodynamics and biomarkers


	Rioci	Riociguat		Placebo		
Parameter	Baseline	Mean change from baseline	Baseline	Mean change from baseline	Placebo- corrected LS-mean difference	Riociguat vs placebo; p-value
PVR (dyn·s·cm ⁻⁵)	791	-223 (-28%)	834	-9 (-1%)	-226	<0.0001
mPAP (mmHg)	47.1	-3.9 (-8%)	48.9	-0.5 (-1%)	-3.8	0.0002
CI (L/min/m²)	2.52	+0.54 (+21%)	2.49	-0.02 (-1%)	+0.56	<0.0001
NT-proBNP (ng/L)	1027	-198 (-19%)	1228	+232 (+19%)	-432	<0.0001

Long-term outcomes in patients treated with Riociguat for chronic thromboembolic pulmonary hypertension: Data from the CHEST-2 open-label, long-term extension trial


Gérald Simonneau, Andrea M D'Armini, Hossein-Ardeschir Ghofrani, Friedrich Grimminger, Pavel Jansa, Nick H Kim, Eckhard Mayer, Tomas Pulido, Chen Wang, Pablo Colorado, Arno Fritsch, Christian Meier, Sylvia Nikkho and Marius M Hoeper

Lancet Respir Med. 2016

Mean change from baseline in 6MWD in CHEST-2

Survival in CHEST-2

 The estimated survival rate was 97% (95% CI 93–98) at 1 year and 93% (95% CI 89–96) at 2 years

Frequency of AEs per 100 patient-years

	CHEST-1	Total (n=237) 2081 (550.9)	
AEs, n (rate per 100 patient-years) ^a	Riociguat (n=173)		
Any AE	889 (1732.5)		
5 most frequent AEs in CHEST-2			
Nasopharyngitis	29 (56.5)	86 (22.8)	
Dizziness	57 (111.1)	61 (16.2)	
Peripheral edema	30 (58.5)	61 (16.2)	
Upper respiratory tract infection	11 (21.4)	40 (10.6)	
Diarrhea	27 (52.6)	39 (10.3)	
Dyspnea	9 (17.5)	39 (10.3)	
AEs of special interest			
Syncope	4 (7.8)	22 (5.8)	
Hypotension ^b	16 (31.2)	17 (4.5)	
Other AEs of interest			
Hemoptysis	4 (7.8)	10 (2.7)	

^aTotal number of events are shown; a patient may have had more than 1 event ^bDefined by systolic blood pressure <90 mmHg CHEST-2 data cut-off March 2013; mean treatment duration was 582 days Simonneau G *et al. Eur Respir J* 2015;45:1293–302.

MERIT: <u>Macitentan in thE tReatment of Inoperable</u> chronic <u>Thromboembolic pulmonary hypertension</u>

MERIT-1:

- To evaluate the safety, tolerability and efficacy of macitentan in 78 inoperable CTEPH
- Primary Outcome Measure:
 - PVR at rest at Week 16 expressed as percent of baseline PVR at rest
- Secondary Outcome Measures

Results:

- Significant 16% reduction in PVR at Week 16 with macitentan compared with placebo (p = 0.04)
- > Significant effect on 6MWD at Week 24: +34.0 m with macitentan compared with placebo (p = 0.03)
- ➤ Observed efficacy was consistent across all sub-groups, including patients receiving background PAH-specific therapy at baseline (61%), including PDE-5 inhibitors (59%)

Balloon pulmonary angioplasty for inoperable CTEPH

- BPA was first developed for treating PA congenital stenosis ¹
- A 1st case series of 18 patients from USA was reported in 2001² with a treatment effect less than those obtained with PEA and with a high rate of severe complications
- Over the last 10 years, several centers in Japan (Okayama, Osaka, Kobe, Tokyo ..and others) have refined the BPA procedure leading to improvement in efficacy and safety of this treatment option for inoperable patients with CTEPH³

1.Lock HE et al . Circulation 1983. 2. Feinstein JA et al . Circulation 2001. 3.A Ogawa & H Matsubara. Reviews in Medicine 2015.

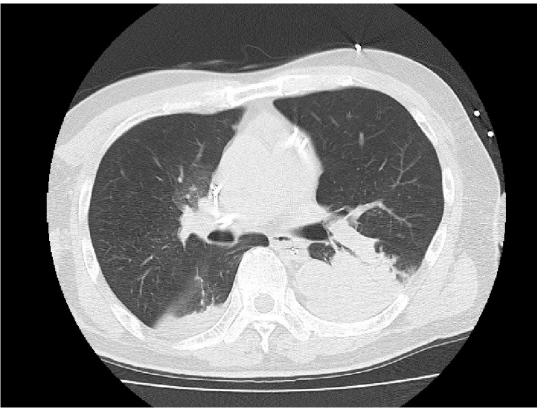
Balloon Pulmonary Angioplasty (BPA) in CTEPH: the Japanese experience

Hemodynamic results

	N	Before BPA PVR	After BPA PVR	Treatment effect
Mizoguchi 2012	68	942±367	327±151	-65%
Sugimura 2012	12	672±236	310±73	-54%
Fukui 2014	20	889±365	490±201	-45%
Taniguchi 2014	29	763±308	284±128	-63%

Mizoguchi H, Circ Cardiovasc Interv 2012; Sugimura K, Circ J 2012;; Fukui S, Eur Respir J 2014; Taniguchi Y et al, EuroIntervention 2014

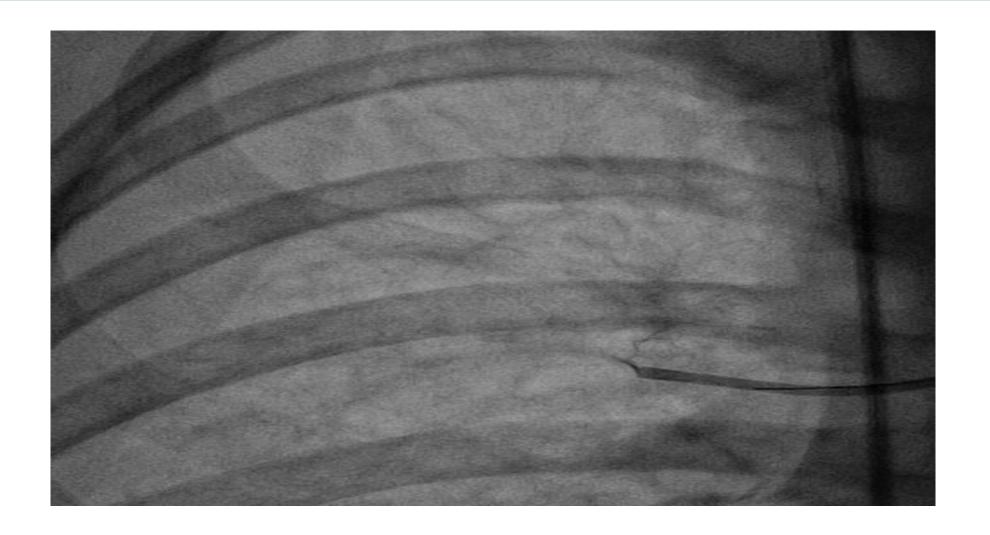
BPA: Safety


- Relatively frequent 10% of sessions and 38% of patients (1)
- Mortalty between 0% and 5%
- Main complications are pulmonary artery injuries: PA ruptures, PA dissection, PA perforations, reperfusion lung injury (2)
- Correlation between the rate of complications & hemodynamic severity (1)

	Reperfusion lung injury +	Reperfusion lung injury -	p
PAPm (mmHg)	42 (38-50)	33(28-41)	0,0001
RVP(UW)	9,2(7-14,6)	6,1(3,9-8,7)	0,0001
IC $(L/min/m^2)$	2,5(1,9-2,7)	2,6(2,4-3,3)	0,006

1. Inami et al, International Journal cardiology 2013 2. Imani et al, JACC cardiovascular intervention, 2015

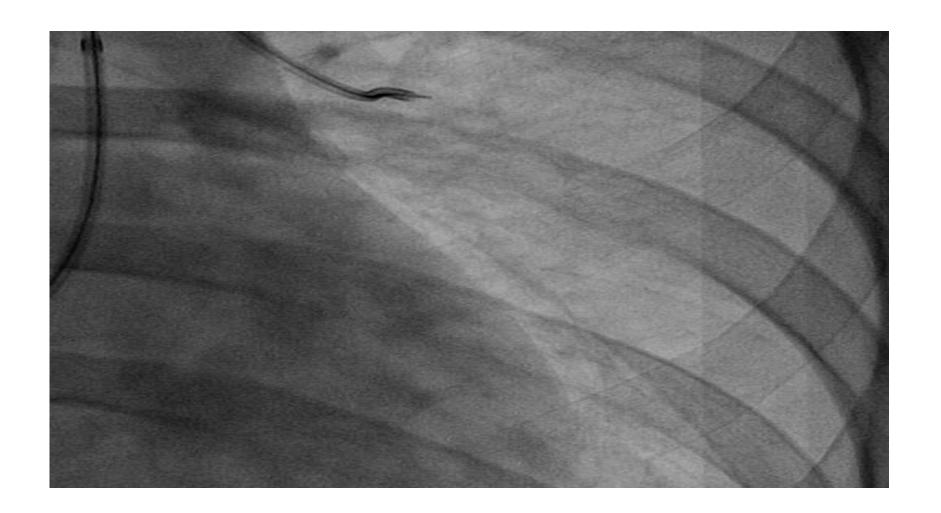
Reperfusion lung injury

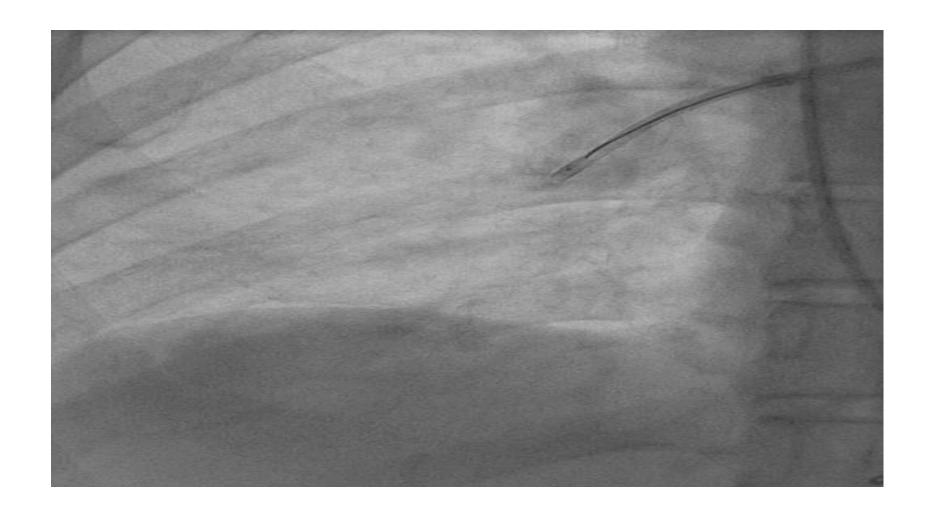

- Characterised by localised and dense lung opacities on CT SCAN
- Immediatly or few hours after BPA
- Severity highly variable
- With or without hemoptysis

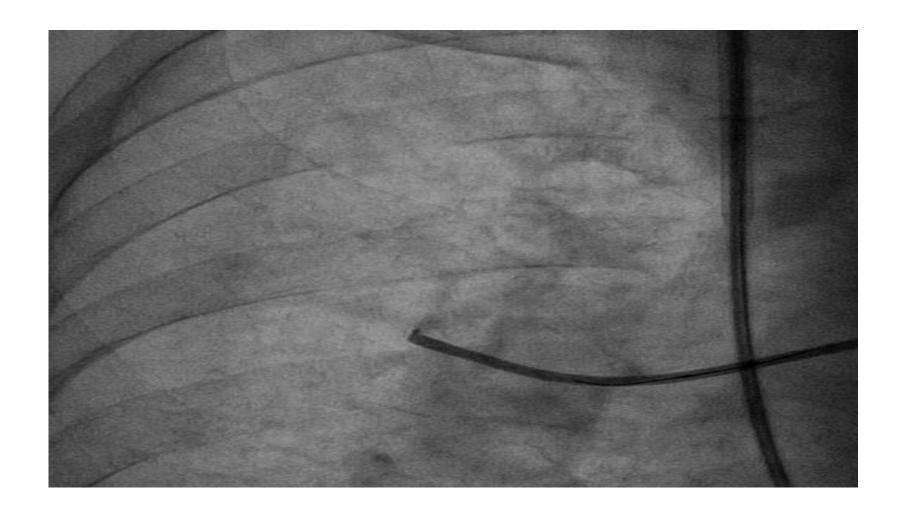
Success & complication rate of BPA according to morphology of chronic thromboembolic lesions

Novel Angiographic Classification of Each Vascular Lesion in Chronic Thromboembolic Pulmonary Hypertension Based on Selective Angiogram and Results of Balloon Pulmonary Angioplasty

- ➤ Between 2004 & 2012 the Okayama center enrolled 97 patients undrgoing BPA for CTEPH Were analyzed 500 consecutive procedures (1936 lesions)
- Lesions were classified Type A: Ring-like stenosis lesions. Type B: web lesions Type C: subtotal occlusion Type D: total occlusion lesion. Type E: Tortuous lesions
- Complications: Balloon injury, wire injury/perforation, vessel dissection Hemoptysis, Lung injury (hypoxemia + lung opacities) and deaths
- > Success rate in passing the guidewire across the lesion and delivering the balloon cath to the lesion and clinical and hemodymamic improvement


A: Ring-like stenosis lesions (12%) success 100% Complications 1.6%


B: Web lesions (60%) success 98.7% Complications 2.2%


C:Subtotal occlusion lesions (28%) success 86.5% Complications 16%

D:total occlusion lesions (4%) success 56.5% Complications 6%

E: Tortuous lesions (6%) success 63.5% Complications 43%

BPA at Paris Sud University: Patient's Selection

Weekly multidiciplinary meeting

- ➤ Cardiothoracic surgeons experienced in PEA (E Fadel, S Mussot, O Mercier)
- ➤ Cardiologists experienced in BPA (Ph Brenot, C Garcia, B Gerardin)
- ➤ Pneumologists experienced in PH (X Jais, M Humbert, G Simonneau,,,,,,,)
- ➤ Radiologists experienced in Pulmonary vascular imag. (O Planché, A Rangeard)

• BPA Proposed in :

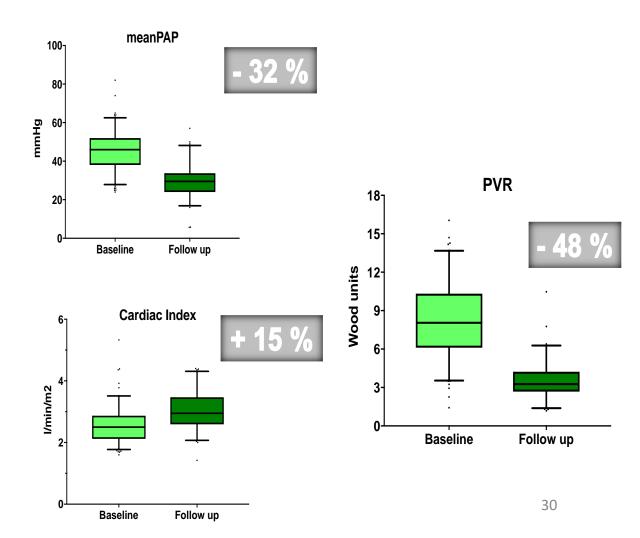
- ➤ Inoperable CTEPH due to distal disease
- ➤ Inoperable CTEPH due co-morbidities
- > Recurent/ persistent pulmonary hypertension after PEA
- ➤ (Rescue therapy immediatly after failure of PEA)

BPA at Paris Sud University Since feb 2014 to july 2016)

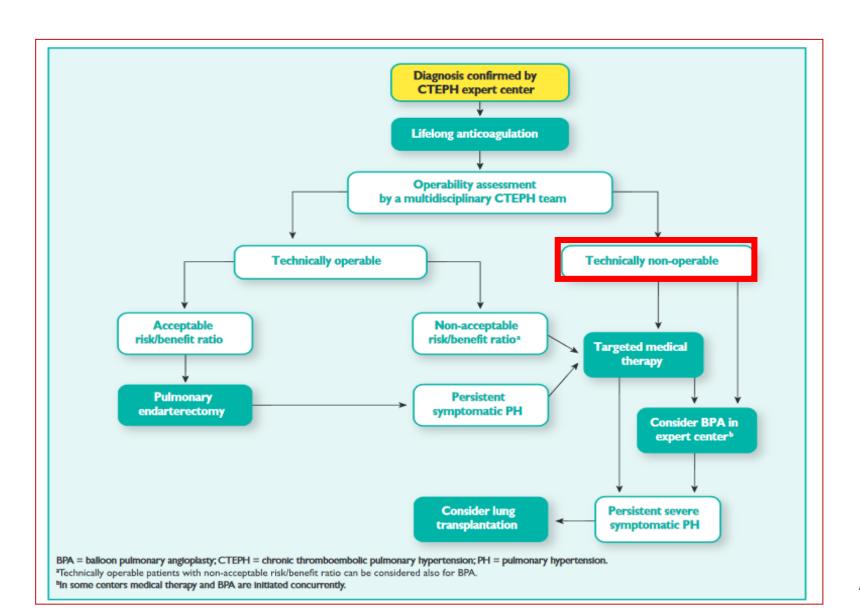
136 Patients (748 sessions), Mean age 63 yo, 54% male

Risk Factors for CTEPH

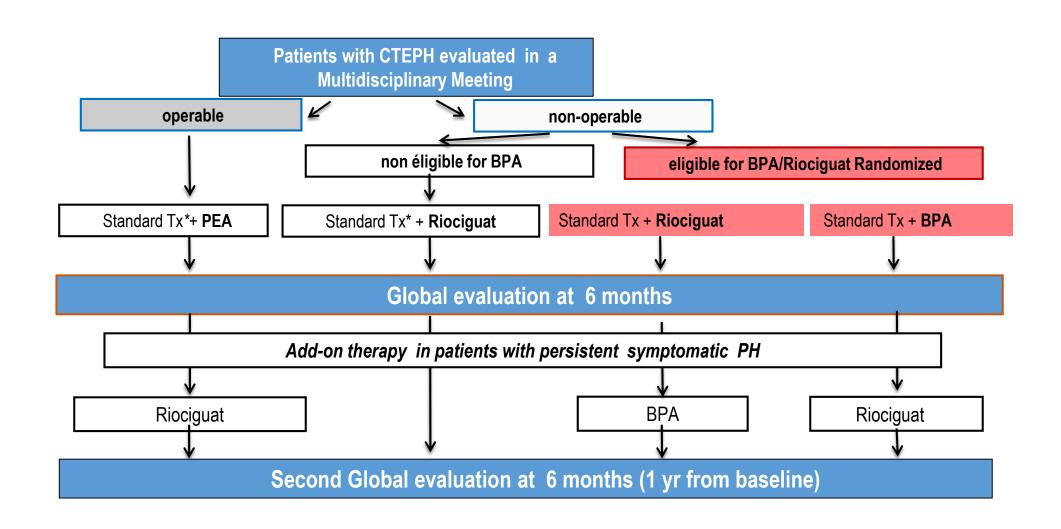
Indications for BPA


Splenectomy	13%	Distal disease	66%
PAC for chemotherapy	10%	Co-morbidities	23%
Haematologic disorders	8%	Persistent/recurrent CTEPH after PEA	5,5%
Tracmatologic disorders	O 70	Before BPA in severe patients	1%
Antiphosoholipids AB syndrome	4%	Boloro Bi / tim covoro padionio	1 70
Pace-maker	2%	(Rescue therapy after failure of PEA)	5%

BPA at Paris Sud University Safety data in 136 patients and 748 sessions (5.5 per patients)


Complications	N	% sessions	% patients	Management
Hemoptysis	38	5%	25%	2 bronchial arteries embolizations
PA dissection	12	1.5%	10%	6 stents
Reperfusion lung injury	41	6%	30%	Nasal O2 18% Non Invasive Ventilation12% Invasive Ventilation 2%
Deaths related to BPA	4	0.4%	3 %	Reperfusion lung injury
Others (Renal insuf., Infection, puncture sitet	7	1%	5%	

BPA at Paris Sud University Efficacy data in 75 patients with a mean follow-up of 7.7 months


	Baseline	Follow-up	<i>p</i> -value
Mean RAP(mmHg)	8 ± 3	6 ± 4	0,063
Mean PAP (mmHg)	44 ± 10 30 ± 9		< 0.001
Cardiac index (L/min/m²)	2.6 ± 0,6	3.0 ± 0.6	< 0.001
PVR (UW)	7.6 ± 3,0	3.6 ± 1,5	< 0.001

Current management of CTEPH Recent Guidelines

RACE Study "Riociguat versus balloon pulmonary Angioplasty in non-operable CTEPH

Current management of CTEPH: Summary

- ➤ In operable CTEPH (50 to 60% of cases) Pulmonary endarterectomy (PEA) remains the gold standard treatment with a post-operative mortality rate of 3% in expert centers and a dramatic post-operative improvement. Riociguat is effective for the treatment of residual PH after PEA, its role as a bridge to PEA needs to be properly evaluated
- **→** In non operable CTEPH
- Riociguat is the only approved drug with a good safety profil
- There is growing evidence that **BPA** is very effective, however it is time consuming and is frequently associated with some complications, sometimes severe
- The respective role of Riociguat and BPA remains to be properly evaluated

Today we are entering a new era for the management of CTEPH with the possibility to combine in many patients PEA, BPA and medical therapy


International CTEPH Conference 2017 June 9 – 10, 2017 Leuven, Belgium

www.icc2017.be

February 27-28 March 1, 2018

WORLD SYMPOSIUM ON PULMONARY HYPERTENSION