

IPF the missing link

Out of proportion pulmonary hypertension

Rome 29-30 May 2015

Sergio Harari
U.O. di Pneumologia e UTIR
Servizio di Emodinamica e
Fisiopatologia Respiratoria
Ospedale San Giuseppe - Milano

CLASSIFICATION 4th World Symposium 2008

1. Pulmonary Arterial Hypertension

☐ Idiopathic PAH

Disorders of the respiratory system and hypoxemia

- Chronic obstructive pulmonary disease
- Interstitial lung disease
- Sleep disorders
- Alveolar hypoventilation
- Chronic exposure to high altitude
- Others...

1'. Pulmonary veno occlusive disease (PVO) and/ or pulmonary capillary hemangiomatosis (PCH)

2. Pulmonary hypertension due to left heart disease

- Systolic dysfunction
- Diastolic dysfunction
- Valvular disease
- 3. Pulmonary hypertension due to lung diseases and/or hypoxia
- COPD
- Interstitial lung disease
- Others pulmonary diseases
- Sleep-disordered breathing
- Chronic exposure to high altitude
- Developmental abnormalities
- 4. Chronic thromboembolic polmonary hypertension (CTEPH)

5. PH with unclear or multifactorial mechanisms

- 1: Hematologic disorders, myeloproliferative disorders, splenectomy
- 2: Systemic disorders: vasculitis, sarcoidosis, PLCH, LAM, neurofibromatosis
- 3: Metabolic disorders: GD, thyroid disorders, glycogen storage disease
- 4: Others: tumoral obstruction, fibrosing mediastinitis, dyalisis

Disorders of the respiratory system and hypoxemia

- PH is generally mild or moderate (PAP < 30 mmHg), is not per se a predominant prognosis factor and not require specific therapeutic intervention (except oxygen therapy)</p>
- Medial hypertrophy and mild intimal fibrosis

Treatment of hypoxic pulmonary hypertension

- Efficacy of vasodilators has never been demonstrated
- Long-term oxygen therapy improves survival in COPD

24 H > 12 H (NOTT study 1981)

15 H > 0 H (BMRC study 1981)

survival improvement due to O₂ is associated with minor changes in PAP

Beneficial effects of vasodilators in a subgroup of patients with severe PH? The prevalence of PH in patients with ILD varies greatly as a function of the underlying disease and the diagnostic mode used to identify PH

The most extensive data have been published in IPF

- Frequency
- Prognosis
- Diagnosis
- **♦** Treatment

How frequent is it?

Author	Year	Patients	N	Diagnosis	Definition of PH	Prevalence, %
Leutche et al.	2004	IPF	28	RHC	mPAP>35 mmHg	21.4
Nadrous et al.	2005	IPF	88	Echo	sPAP>35 mmHg sPAP>50 mmHg	84 31
Hamada et al.	2007	IPF	70	RHC	mPAP>25 mmHg	8.1
Zisman et al.	2007	IPF	65	RHC	mPAP>25 mmHg	41.5
Patel et al.	2007	IPF	41	RHC	mPAP>25 mmHg +PCWP ≤15 mmHg	20
Shorr et al.	2007	IPF	2.5	RHC	mPAP>25 mmHg	46.1
Nathan et al.	2008	IPF	118	RHC	mPAP>25 mmHg	40.7
Song et al.	2009	IPF	131	Echo	sPAP>40 mmHg	25
Minai et al.	2009	IPF	148	RHC	mPAP>25mmHg mPAP>40mmHg	45.9 14.2
Kimura et al.	2012	IPF	101	RHC	mPAP > 20 mmHg	34,6

The incidence and prevalence of PH in IPF remain unclear, with widely varying estimates.

The differences reflect:

- varying patient populations
- varying underlying disease severity
- differing diagnostic modalities

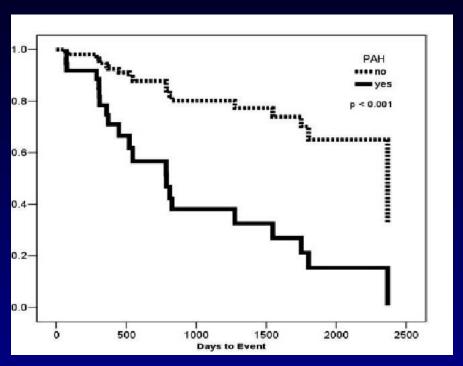
Out-of-proportion PH

- Association of parenchymal lung disease and PH, with a mPAP level above the usual values
- Proposed threshold: mPAP>35 mmHg at rest
- A possible goal for therapies?

Out-of-Proportion PH Nice definitions 2013

COPD/IPF/CPFE without PH: mPAP < 25mmHg

COPD/IPF/CPFE with PH mPAP >25mmHg;


COPD/IPF/CPFE with severe PH mPAP >35mmHg or mPAP >25mmHg with low cardiac index (CI <2.0 l/min/m2)

- Frequency
- Prognosis

Does it affect the prognosis of IPF?

- Diagnosis
- ◆ Treatment

88 patients with IPF	PASP 0-35 mmHg (n=14)	PASP 36-50 mmHg (n=47)	PASP >50 mmHg (n=27)
Median survival	4.8y	4.1y	0.7y
1 year survival	100%	79%	44%
3 year survival	64%	61%	32%

Variables	MAP ≤ 25 mmHg (n= 10)	MAP > 25 mmHg (n= 24)	P value
MPAP, mmHg	18.2 ± 3.6	29.8 ± 5.1	NA
6MWT distance, m	365.9 ± 81.8	143.5 ± 65.5	< 0.001
SpO2 nadir on 6MWT, %	88.0 ± 3.5	80.1 ± 3.7	< 0.001
Mortality rate, %	37.5	70.0	0.003

Lettieri CJ et al. Chest 2006, 129:746-52

Table 1 Demographic and clinical data of the study population (n = 66)

population (n = 66)				
Parameters	No			
Clinical parameters*				
Age (years)	57 (12)			
Gender (F:M)	28:38			
Smoking (pack years)	27 non-smokers, 31 ex- smokers, 7 current smokers, 1 unknown			
Time from presentation (months)	33 (4-264)			
WHO class	3 (1-4)			
Working diagnosis (based on	IPF (n = 16)			
multidisciplinary consensus	Idiopathic NSIP (n = 6)			
including lung biopsy when available)	CTD-related fibrosis (n = 17)			
27232007	Sarcoidosis (n = 12)			
	Other interstitial diseases			
Diago, diagonia	(n = 15)			
Biopsy diagnosis	n = 13 (20%)			
Right heart catheter*	22 6 (11 0)			
mPAP (mm Hg)	33.6 (11.8)			
mRAP (mm Hg) mLAP (mm Hg)†	5.9 (4.2)			
PVR (Wood units)	10.7 (5.1) 5.9 (4.3)			
PVR index (Wood units/m²)	10.4 (7.1)			
Cardiac output (I/min)	4.3 (1.2)			
Cardiac index (I/min/m²)	2.3 (0.5)			
Echocardiography	2.0 (0.0)			
RVSP (mm Hg, n = 48)	56 (24-102)			
PAT (ms, n = 46)	100 (33–144)			
Pulmonary function				
TLCO % (n = 65)	29.6 (14.7)			
Kco % (n = 65)	52.0 (19.7)			
TLC % (n = 61)	72.5 (20.2)			
FEV ₁ % (n = 62)	62.4 (23.3)			
FVC % (n = 62)	67.9 (23.1)			
Pao_2 (kPa, n = 61)	8.4 (2.2)			
Paco ₂ (kPa, n = 61)	5.0 (0.9)			
CPI (n = 62)	56.9 (14.6)			
6MWT (n = 42)				
End Spo ₂ (%)	81.4 (8.4)			
6MWT distance (m)	254.6 (128.1)			

Pulmonary vascular resistance predicts early mortality in patients with diffuse fibrotic disease and suspected pulmonary hypertension

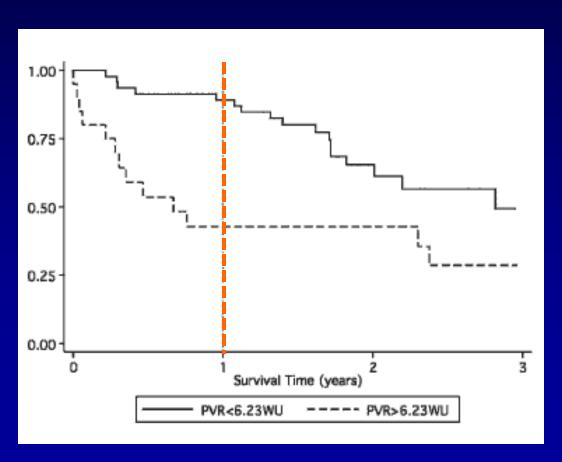
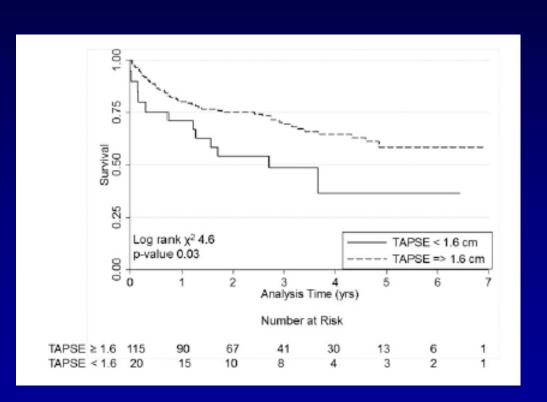

Corte TJ et al. Thorax 2009; 64: 883

Table 2 Comparison of patients dying within 12 months with those surviving at 12 months

	Death within 12 months	Survival at 12 months	p Value*
mPAP (mm Hg)	39.0 (14.1)	31.7 (10.4)	0.03
PVR (WU)	9.4 (5.8)	4.6 (2.8)	< 0.001
PVR index (WU/m²)	16.4 (9.7)	8.5 (4.8)	< 0.001
mLAP (mm Hg)	12.2 (6.4)	9.5 (5.0)	0.11
Cardiac output (l/min)	3.8 (1.3)	4.4 (1.1)	0.06
PAT (ms)	69.4 (21.2)	99.5 (28.1)	0.005
Pao ₂ (kPa)	7.4 (1.4)	8.8 (2.3)	0.03

Pulmonary vascular resistance predicts early mortality in patients with diffuse fibrotic disease and suspected pulmonary hypertension

Corte TJ et al. Thorax 2009; 64: 883



In severe diffuse lung disease, raised PVR strongly predicts death within 1 year independent of disease severity or diagnosis of IPF.

PVR is superior to other measurements at RHC and also to non-invasive tests (alone or in combination). These findings suggest that, in advanced lung disease, prognostic information that is only obtainable by RHC has important management implications

Echocardiographic and Hemodynamic Predictors of Mortality in Idiopathic Pulmonary Fibrosis

Rivera-Rebron BN et al. Chest 2013; 144: 564-570

Methods: We performed a retrospective cohort study of 135 patients who met 2011 American Thoracic Society/European Respiratory Society criteria for IPF and who were evaluated for lung transplantation Conclusions: Right-sided heart size and right ventricular dysfunction measured by echocardiography and higher PVR by invasive hemodynamic assessment predict mortality in patients with IPF evaluated for lung transplantation

 The presence of PH in IPF is associated with higher mortality and its development contributes to the deterioration of IPF patients

- Frequency
- Prognosis
- Diagnosis
- ◆Treatr

How can we investigate these patients?

◆PH in IPF patients is more frequent when the underlying fibrosis is severe (secondary PH)

However, PH may occur in milder disease, raising the possibility of therapeutic intervention

Thus, screening IPF patients for the early identification of PH is essential

Correlates of PH in IPF

- it appears that PH may not correlate with lung volumes in patients with IPF
- factors aside from progressive fibrosis are responsible for PH in IPF
- pulmonary artery remodeling might play a more relevant role than vasoconstriction, yet the two pathogenetic processes might be intimately interrelated

Assessment of PH in IPF

Patients with IPF should be evaluated for PH when:

- The symptoms are more severe than one would expect from lung function data (dyspnea and fatigue are symptoms of IPF as well as PH)
- When signs of right heart failure develop
- If clinical deterioration is not matched by a decline in pulmonary function
- Profound hypoxemia, and a low DLCO are indicators of PH

Recommendation for PH due to lung diseases

Statement	Class#	Levelf
Echocardiography is recommended as a screening tool for the assessment of PH due to lung diseases	Ι	С
RHC is recommended for a definite diagnosis of PH due to lung diseases	Ι	С

Once PH is suspected, patients should be evaluated by echocardiography

should be enrolled in RCIs targeting PAH specific drugs

The use of PAH-specific drug therapy is not recommended in patients with PH due to lung diseases	III	С

class of recommendations f level of evidence

The effect of diffuse pulmonary fibrosis on the reliability of CT signs of pulmonary hypertension

Conclusion: PA dilatation occurs in the absence of PH in patients with pulmonary fibrosis and is therefore an unreliable sign of PH in these patients

Transverse CT scan shows dilatated main PA (diameter 35.23 mm) in 53-year-old patient with IPF and normal PAP

Radiology; 2008; 249:1042-9

Statement	Class#	Levelf		
Echocardiography is recommended as a screening tool for the assessment of PH due to lung diseases	I	С		
RHC is recommended for a definite diagnosis of PH due to lung diseases	Ι	С		
Given the limitations of echocardiography, RHC remains the standard for the diagnosis of PH				
Patients with "out of proportion" PH due to lung diseases should be enrolled in RCTs targeting PAH specific drugs	IIa	С		
The use of PAH-specific drug therapy is not recommended in patients with PH due to lung diseases	III	С		

- Frequency
- Prognosis
- Diagnosis
- ◆ Treatment

Therapeutic options for PH in IPF are limited

ESC/ERS GUIDELINES

Guidelines for the diagnosis and treatment of pulmonary hypertension

The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and European Respiratory Society (ERS) endorsed by the International Society of Heart and Lung Transplantation (ISHLT)

Statement	Class#	Levelf
Echocardiography is recommended as a screening tool for the assessment of PH due to lung diseases	I	С
RHC is recommended for a definite diagnosis of PH due to lung diseases	Ι	С
The optimal treatment of the underlying lung disease including long-term O2 therapy in patients with chronic hypoxaemia is recommended in patients with PH due to lung diseases	I	С

The benefit of reversing intermittent hypoxia (at night or on exercise) is unclear and needs further study

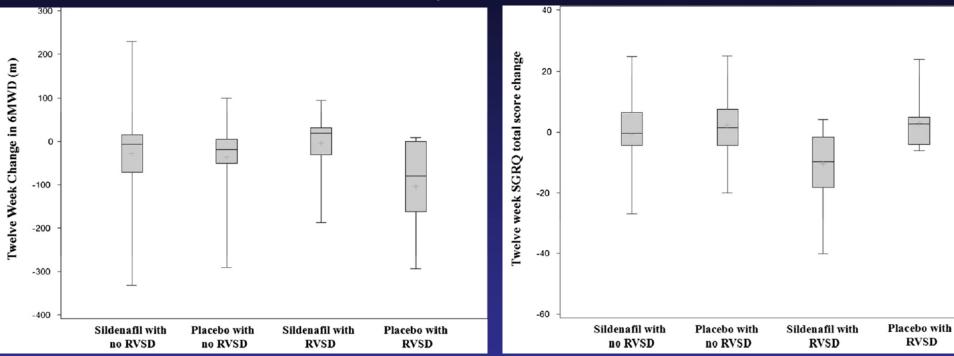
STEP-IPF - Sildenafil in IPF

- Prospective, randomized, clinical trial: to evaluate effectiveness of sildenafil at improving breathing function, exercise capacity and QoL in patients with advanced IPF
- Primary endpoint:

Change in 6-MWD (defined as ≥ 20% improvement or ≤ 20% improvement)

STEP-IPF Results

	Sildenafil	Placebo	P-value
≥ 20% improvement in 6MWD	9/89 (10%)	6/91 (7%)	0.39


- No significant change in 6MWD at 12 or 24 weeks
- No difference in mortality or acute exacerbations after 12 or 24 weeks
- QOL
 - Improvement with treatment on St. George's Respiratory Questionnaire (P = 0.01)
 - No improvement on SF-36 or EQ-5D tests
- Dyspnea
 - Improvement with treatment on SOB Questionnaire (P = 0.006)
 - No improvement on Borg Dyspnea Index after walk test
- Gas exchange at 12 weeks
 - Improvement in DL_{CO} (P = 0.04)
 - Improvement in arterial oxygen saturation (P = 0.05)
- Serious adverse events were similar in the two study groups.

Sildenafil in IPF with Right-sided Ventricular Dysfunction A substudy of STEP-IPF

- Of 180 subjects enrolled into STEP-IPF, echocardiograms from 119 were available for independent review (sildenafil, n 56; placebo, n 63)
- ➤ Right ventricular hypertrophy (RVH), right ventricular systolic dysfunction (RVSD), and right ventricular systolic pressure (RVSP) were assessed.
- Multivariable linear regression models estimated the relationship between RV abnormality, sildenafil treatment, and changes in 6MWD,
- St. George's Respiratory Questionnaire (SGRQ), the EuroQol instrument, and SF-36 Health Survey (SF-36) from enrollment to 12 weeks.

 Chest 2013; 143 (6): 1699-1708

Sildenafil in IPF with Right-sided Ventricular Dysfunction A substudy of STEP-IPF

Change in 6MWD at 12 weeks by treatment and presence of RVSD

Change in SGRQ total score at 12 weeks by treatment and presence or RVSD

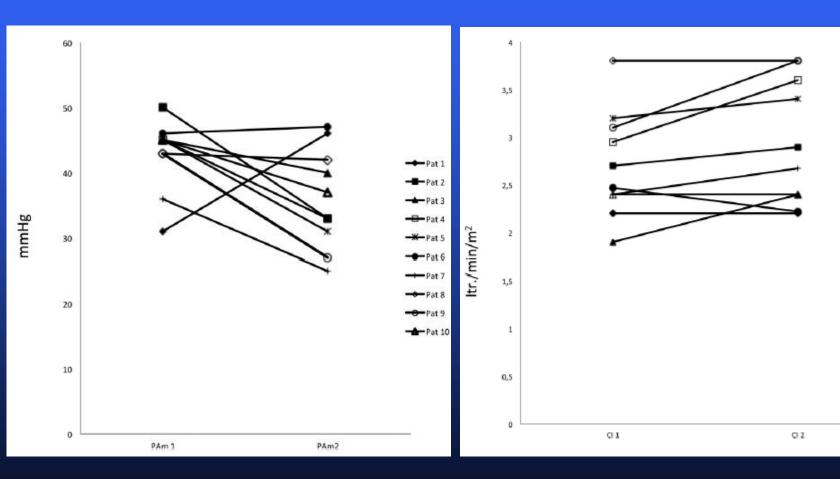
Patients with any evidence of RVSD treated with sildenafil demonstrated a 99.3 m greater 6MWD as compared with those treated with placebo.

Treatment with sildenafil in subjects with RVSD resulted in a significantly lower SGRQ total score

Haemodynamic changes in pulmonary hypertension in patients with interstitial lung disease treated with PDE-5 inibitors Zimmerman GS. et al. Respirology 2014;19: 700 - 706

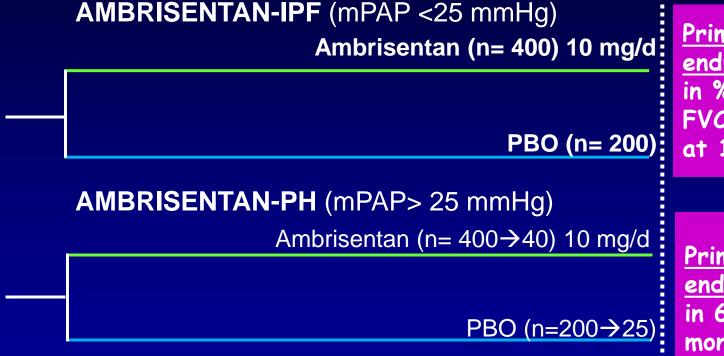
Objective: to evaluate the therapeutic benefit of phosphodiesterase-5 (PDE-5) inhibitors in PH secondary to ILD

Methods: Patients with ILD and PH were treated with sildenafil or tadalafil. RHC was performed before and after a minimum of 3-month treatment. In addition, lung function, 6MWD and plasma BNP concentration were assessed.


Results: Ten ILD patients (six with IPF, four with HP) with precapillary PH (PAPm \geq 25 mmHg, PAWPm \leq 15 mmHg) were treated with either sildenafil (n = 5) or tadalafil (n = 5).

After mean follow-up of 6.9 \pm 5.8 months an increase in CI (2.9 \pm 0.7 L/min/m2, P = 0.04) and a decrease in PVR (403 \pm 190 dyn \times sec \times cm-5, P = 0.03) were observed. 6MWD and BNP did not change significantly.

Conclusion: Our data suggest that treatment with PDE-5 inhibitors improves pulmonary haemodynamic patients with PH secondary to ILD.


Haemodynamic changes in pulmonary hypertension in patients with interstitial lung disease treated with PDE-5 inibitors

Zimmerman GS. et al. Respirology 2014;19: 700 - 706

PAPm

ARTEMIS STUDIES Study design

Primary
endpoint Change
in % predicted
FVC and DLCO
at 12 months

Primary
endpoint Change
in 6MWT at 12
months

Ambrisentan PH-IPF trial was interrupted prematurely because of a lack of superior activity of the experimental arm (unpublished data)

Treatment of idiopathic pulmonary fibrosis with ambrisentan A parallel, randomized trial

Raghu G. et al. Ann Inter Med 2013;158: 641 - 649

Objective: To determine whether ambrisentan, an ETA receptor— selective antagonist, reduces the rate of IPF progression

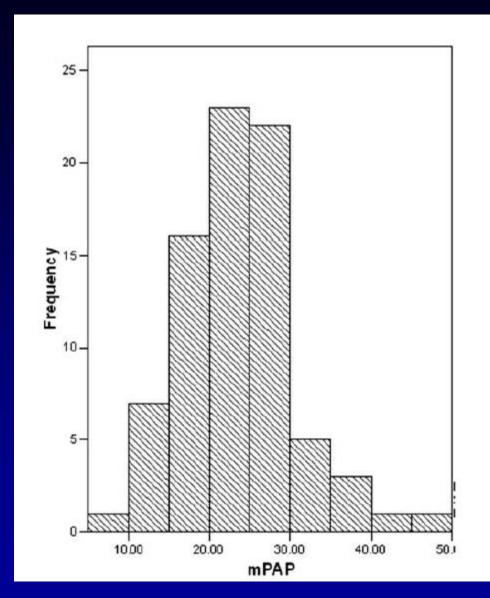
Design: Randomized, double-blind, placebo-controlled, event driven trial (ClinicalTrials.gov: NCT00768300)

Participants: Patients with IPF aged 40 to 80 years with minimal or no honeycombing on HRCT

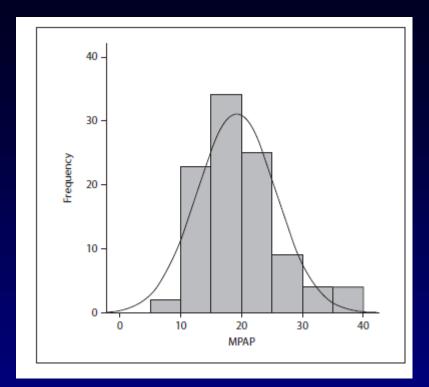
Intervention: Ambrisentan, 10 mg/d, or placebo

Measurements: Time to disease progression, defined as death, respiratory hospitalization, or a categorical decrease in lung function.

Conclusion: Ambrisentan was not effective in treating IPF and may be associated with an increased risk for disease progression and respiratory hospitalizations

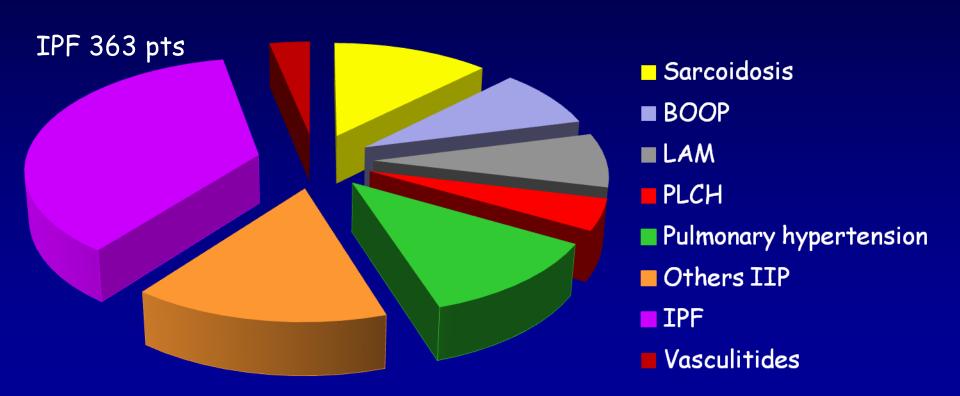

Out-of-proportion pulmonary hypertension A paradigm for rare diseases

..we can highlight some of the limitations of this study design, which have also been observed in other studies


First, patients who were deemed eligible for enrollment included not only those with a PAP> 35 mm Hg, but also subjects with a mean PAP > 25 mm Hg

Second, the 6-MWD, which is a non validated and probably misleading test, was chosen as the primary end point

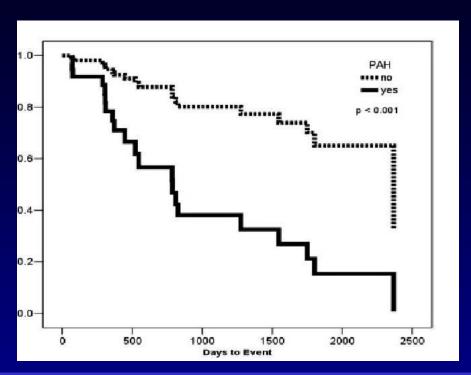
This test has not yet been validated as a useful screen for PH in IPF, and its prognostic significance is still unknown



Lettieri CJ et al. Chest 2006, 129:746-52

Kimura M et al. Respiration 2012

Pulmonary rare diseases Ospedale San Giuseppe Experience (2001- 2012) Tot. 996 patients


RHC and 6MWD in IPF

Variables	MAP ≤ 25 mmHg (n= 17)	MAP > 25 mmHg (n= 13)	MAP > 35 mmHg (n= 4)	P value
MPAP, mmHg	19.4 ± 3.6	32.4 ± 6	40,5 ± 2,6	NA
6MWT distance, m	222.0 ± 118.5	222.3 ± 118.5	203.7 ± 128.3	>0.1
FVC, %	51.6 ± 13.8*	63.8 ± 16*	56.0 ± 6.7	<0.05
FEV1, %	58.3 ± 16.3	65.8 ± 18.8	55.2 ± 3.7	> 0.05
DLCO, %	31.4 ± 9.6	24.2 ± 13.0	29.0 ± 7.4	> 0.05
CI, I/min/m2	3.4 ± 0.55*	2.9 ± 0.7*	2.8 ± 0.6	<0.05
PVR, wood units	3.5 ± 1.1*	6.9 ± 1.4*	10.3 ± 2.0	<0.05

Our data suggest that meters walked during 6MWT are not statistically different in IPF patients with or without PH.

6MWD should not be used as surrogate end point in clinical study in IPF-PH pts.

6MWT in IPF

Variables	MAP ≤ 25 mmHg (n= 10)	MAP > 25 mmHg (n= 24)	P value
MPAP, mmHg	18.2 ± 3.6	29.8 ± 5.1	NA
6MWT distance, m	365.9 ± 81.8	143.5 ± 65.5	< 0.001
SpO2 nadir on 6MWT, %	88.0 ± 3.5	80.1 ± 3.7	< 0.001
Mortality rate, %	37.5	70.0	0.003

Lettieri CJ et al. Chest 2006, 129:746-52

Out-of-proportion pulmonary hypertension A paradigm for rare diseases

Out-of-proportion PH is a gray area of medicine that needs further clarification on some issues.

First of all, we need to clarify whether a mean PAP of 35 mm Hg is the adequate value to define this category of patients, or whether another cutoff should be selected.

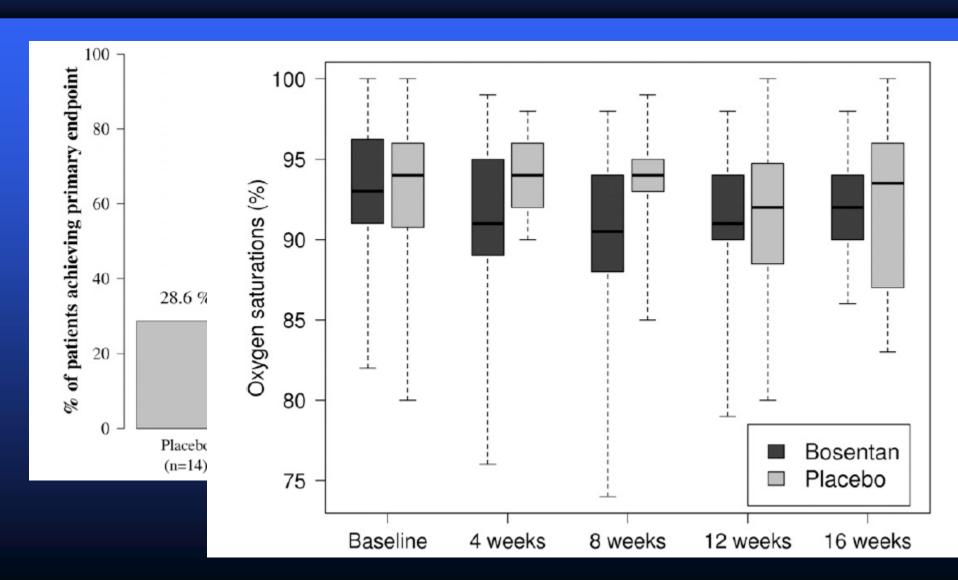
Secondly, we need to clarify if we should consider only patients with minor pulmonary function abnormalities and moderate to severe PH as potential candidates for PH therapies.

Harari S. Chest, 2012; 145: 1087

Bosentan in pulmonary hypertension associated with fibrotic idiopathic interstitial pneumonia

Corte TJ et al. Am J Respir Crit Care Med 2014;190: 208 - 217

Objective: to evaluate the safety and clinical efficacy of the dual endothelin-1 receptor antagonist bosentan in patient with IIP (UIP and NSIP).


Design: randomized, double-blind, placebo-controlled study

Intervention: 60 patients with fibrotic IIP and RHC confirmed PH were randomized 2:1 to bosentan (n = 40) or placebo (n = 20). The primary study endpoint was a fall from baseline pulmonary vascular resistance index (PVRi) of 20% or more over 16 weeks

Conclusions: This study shows no difference in invasive pulmonary hemodynamics, functional capacity, or symptoms between the bosentan and placebo groups over 16 weeks. Our data do not support the use of the dual endothelin-1 receptor antagonist, bosentan, in patients with PH and fibrotic IIP

Bosentan in pulmonary hypertension associated with fibrotic idiopathic interstitial pneumonia

Corte TJ. et al. Am J Respir Crit Care Med 2014;190: 208 - 217

Riociguat for interstitial lung disease and pulmonary hypertension: a pilot trial

Hoeper MM. et al. Eur Respir J 2013;41: 853 - 860

TABLE 1	Baseline demographics and characteristics of the patient	
Patients n		22
Age years		60.5 (33.0-80.0)
White ethnicit	tv	22 (100.0)
Male sex	•	14 (63.6)
BMI kg·m ⁻²		26±4
WHO function	nal class	
III		19 (86.4)
IV		3 (13.6)
6-min walk di	stance m	316±96
Underlying di	sease	
Idiopathic pulmonary fibrosis		13 (59.1)
Non-specific interstitial lung disease		5 (22.7)
Sarcoidosis		3 (13.6)
Systemic sclerosis		1 (4.5)
Pulmonary fu	nction	
TLC % pred		67 ± 12
FVC % pred		67±20
FEV1 % pred		67 ± 17
DLCO* mmol·min ⁻¹ ·kPa ⁻¹		2.7 ± 1.5
Haemodynam	ics and blood gases	
Mean pulmo	nary artery pressure mmHg	40±10
Pulmonary v	ascular resistance dyn·s ⁻¹ ·cm ⁻⁵	656 ± 201
Cardiac output L·min ⁻¹		4.3 ± 1.4
Systolic blood pressure# mmHg		136±16
Heart rate ¹ beats per minute		78 ± 14
SPO ₂ %		94±3
SvO₂ ¹ %		62±12
Paco₂ mmHg		39±7

Riociguat for interstitial lung disease and pulmonary hypertension: a pilot trial

Hoeper MM. et al. Eur Respir J 2013;41: 853 - 860

Objective: to assess the safety, tolerability and preliminary efficacy of riociguat, in patients with PH-ILD

Design: open-label, uncontrolled pilot trial

Intervention: patients received oral riociguat (1.0–2.5 mg three times daily) for 12 weeks (n=22), followed by an ongoing long-term extension (interim analysis at 12 months) in those eligible (n=15)

Conclusions: Riociguat was well tolerated by most patients and improved cardiac output and PVR, but not mPAP. Further studies are necessary to evaluate the safety and efficacy of riociguat in patients with PH-ILD.

ESC/ERS GUIDELINES

Guidelines for the diagnosis and treatment of pulmonary hypertension

The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and European Respiratory Society (ERS) endorsed by the International Society of Heart and Lung Transplantation (ISHLT)

Statement	Class#	Level <i>f</i>
Echocardiography is recommended as a screening tool for the assessment of PH due to lung diseases	Ι	С
RHC is recommended for a definite diagnosis of PH due to lung diseases	Ι	С
The optimal treatment of the underlying lung disease including long-term O2 therapy in patients with chronic hypoxaemia is recommended in patients with PH due to lung diseases	Ι	С
Patients with "out of proportion" PH due to lung diseases should be enrolled in RCTs targeting PAH specific drugs	IIa	С
The use of PAH-specific drug therapy is not recommended in patients with PH due to lung diseases	III	С

Eur Respir J 2009; 34:1219

ESC/ERS GUIDELINES

Guidelines for the diagnosis and treatment of pulmonary hypertension

The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and European Respiratory Society (ERS) endorsed by the International Society of Heart and Lung Transplantation (ISHLT)

Statement	Class#	Levelf
Echocardiography is recommended as a screening tool for the assessment of PH due to lung diseases	I	С
RHC is recommended for a definite diagnosis of PH due to lung diseases	Ι	С
The optimal treatment of the underlying lung disease including long-term O2 therapy in patients with chronic hypoxaemia is recommended in patients with PH due to lung diseases	I	С
Patients with "out of proportion" PH due to lung diseases should be enrolled in RCTs targeting PAH specific drugs	IIa	С
The use of PAH-specific drug therapy is not recommended in patients with PH due to lung diseases	III	С

Eur Respir J 2009; 34:1219

IPF and sleep disorders

Poor sleep quality and daytime sleepiness are extremely common in patients with IPF

Poor sleep quality however does not seem to be associated to the degree of lung impairment

Chest 2008; 134: 693-698

Strong correlation has been found between oxygen saturation during sleep and Fatigue Severity Scale

Med Princ Pract 2009; 18: 10-15

Sleep apnea and PH

Experimental intermittent hypoxia administered for part of the day for just a few weeks in rodents results in

- Pulmonary Hypertension
- Pulmonary arteriolar remodeling
- Right ventricular hypertrophy
 - J Appl Physiol 99:2028-2035, 2005
 - J Appl Physiol 90:2502-2507, 2001
 - Eur Respir J 18:279-285, 2001

Effects of Cyclic Intermittent Hypoxia on ET-1 Responsiveness and Endothelial Dysfunction of Pulmonary Arteries in Rats

Zhuo Wang¹³, Ai-Ying Li²³, Qiu-Hong Guo³, Jian-Ping Zhang³, Qi An¹, Ya-jing Guo¹, Li Chu³, J. Woodrow Weiss⁴*, En-Sheng Ji¹*

- Exposure to intermittent hypoxia was shown to decrease the relaxation to Acetylcholine, in pulmonary arteries pre-treated with phenylephrine
- ET-1 was found to induce a significant dosedependent contraction of the pulmonary artery
- ❖ Vessels from CIH rats were more sensitive to ET-1 than those from normoxia rats.

Thus, the hypoxic conditions used (2 min. cycles of 9%/21% O2, 8 h/day, 3 wks) eventually impaired endothelium-dependent vasodilation and increased vasoconstrictor responsiveness, which is in agreement with the pathology observed in human OSA

Conclusions

- IPF is commonly complicated by the development of PH
- PH in the context of IPF has functional and prognostic implications for the patient
- There is no sufficient evidence that the drugs currently used for PAH are safe and effective in patients with PH associated with IPF
- Patients with PH and IPF disease should be treated in the setting of clinical trials whenever possible

Conclusions

- The use of drugs currently approved for PAH, in patients with IPF is not recommended until further data are available
- Sleep disorders should be considered in the presence of PH
- Lung transplantation is the best option for these patients