

Treatment algorithm in pulmonary arterial hypertesion

Olivier SITBON

French Reference Center for Pulmonary Hypertension,
Department of Respiratory and Intensive Care Medicine
Hôpital Bicêtre – Université Paris-Saclay – INSERM UMR_S999
Le Kremlin-Bicêtre – France

de la santé et de la recherche médicale

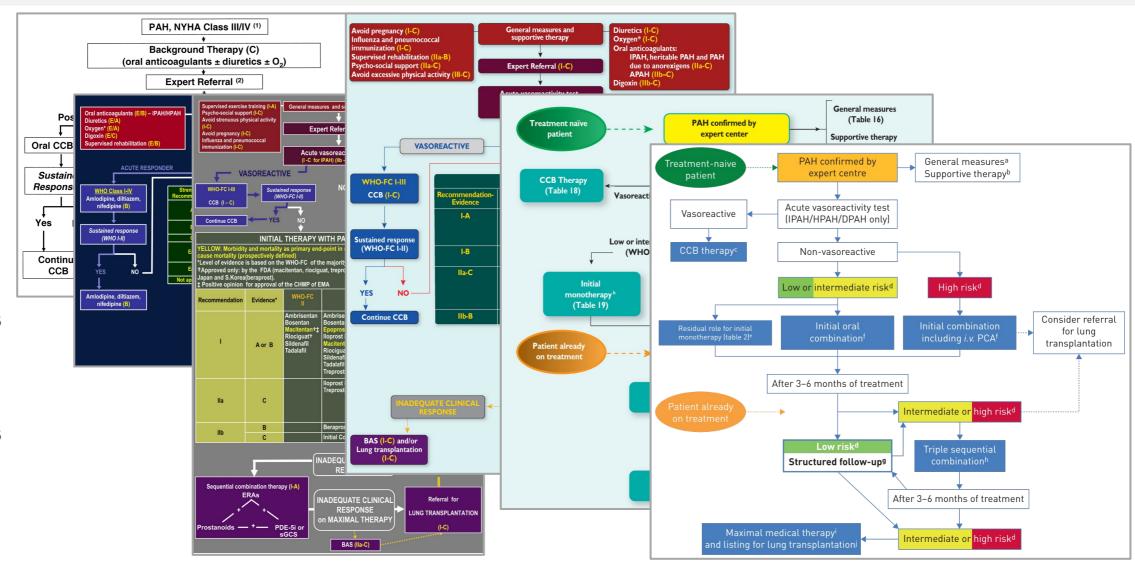
(ERN-LUNG)

Conflict of interest disclosure

Affiliation / Financial interest	Commercial Company
Grants/research support payed to the institution:	Acceleron Pharmaceuticals (now part of MSD), AOP Orphan, Bayer, GlaxoSmithKline, Janssen (formerly Actelion), MSD
Personal honoraria or consultation fees:	Acceleron Pharmaceuticals (now part of MSD), Aerami, AOP Orphan, Enzyvant, Ferrer, Gossamer Bio, Janssen (formerly Actelion), MSD, United Therapeutics
Other support / potential conflict of interest:	None

A story of treatment algorithms in PAH

WPHS 2003

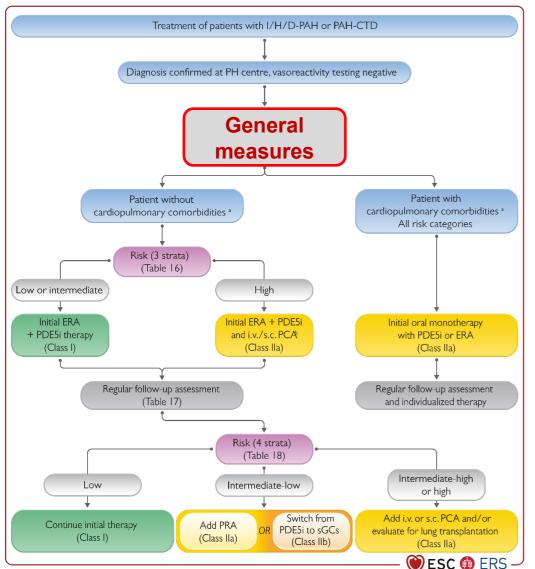

WPHS 2008

WPHS 2013

ESC-ERS Guidelines 2009

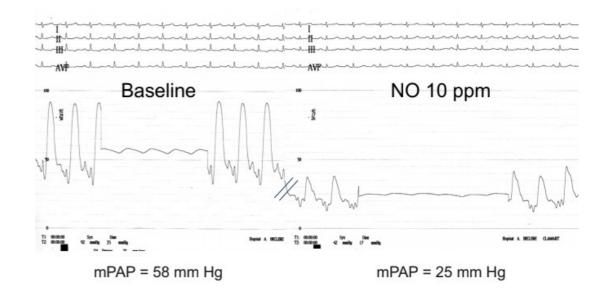
ESC-ERS Guidelines 2015

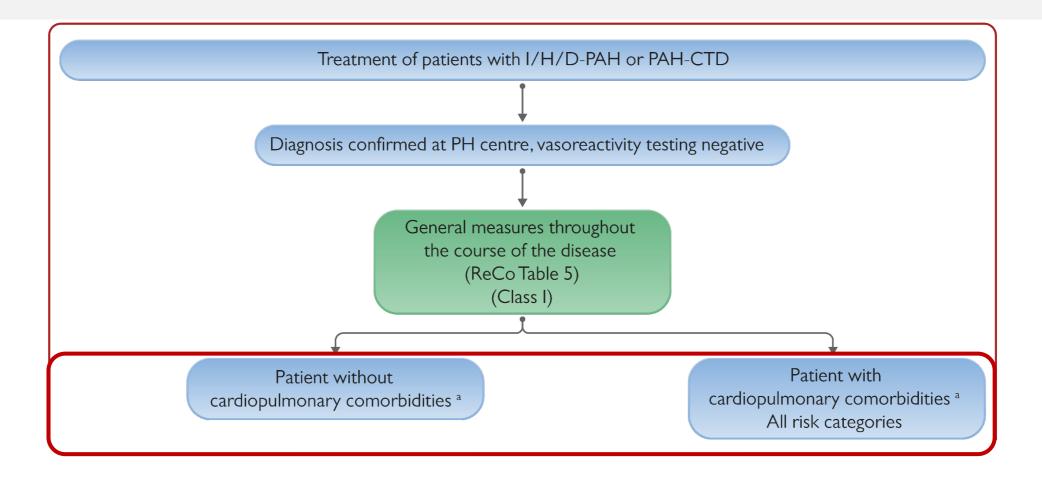
WPHS 2018



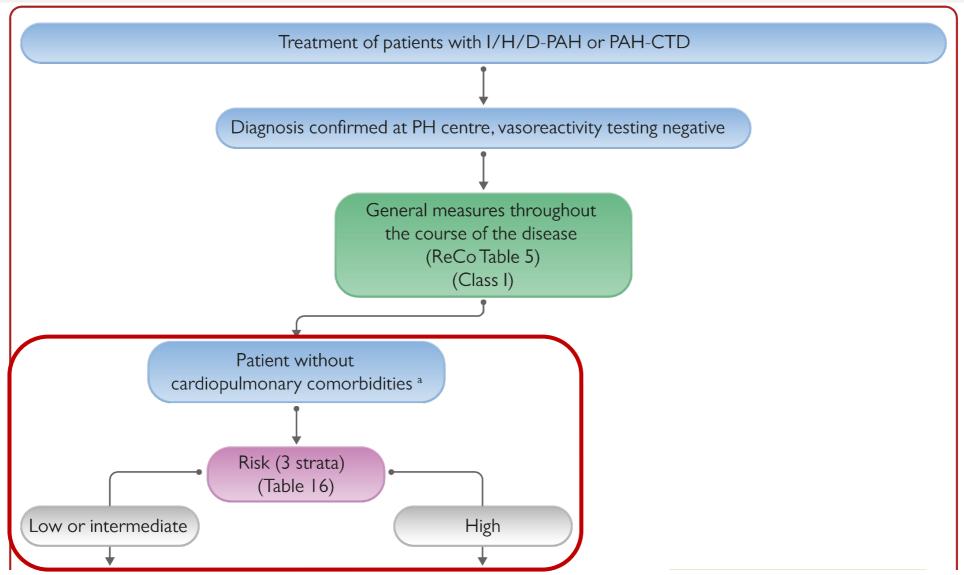
Treatment algorithm for patients with idiopathic, heritable, drug-associated, and CTD-associated PAH

Recommendations	Class	Level
Supervised exercise training is recommended in patients with PAH under medical therapy	1	Α
Psychosocial support is recommended in patients with PAH	1	С
Immunization of patients with PAH against SARS-CoV2, influenza, and <i>Streptococcus pneumoniae</i> is recommended	1	С
Diuretic treatment is recommended in patients with PAH with signs of RV failure and fluid retention	1	С
Long-term oxygen therapy is recommended in patients with PAH whose arterial blood oxygen pressure is <8 kPa (60 mmHg)	1	С
In the presence of iron-deficiency anaemia, correction of iron status is recommended in patients with PAH	1	С
Anticoagulation is not generally recommended in patients with PAH but may be considered on an individual basis	IIb	С


Vasoreactivity testing algorithm of patients with presumed diagnosis of idiopathic, heritable, or drug-associated PAH


Compound	Route	Half-life	Dosage	Duration
Nitric oxide	inh	15-30 s	10-20 p.p.m.	5–10 min
lloprost	inh	30 min	5–10 μg	10-15 min
Epoprostenol	i.v.	3 min	2-12 ng/kg/min	10 min

Positive vasoareactivity test 10 mmHg mPAP drop from baseling


≥ 10 mmHg mPAP drop from baseline to ≤ 40 mmHg, Without decrease in CO/CI

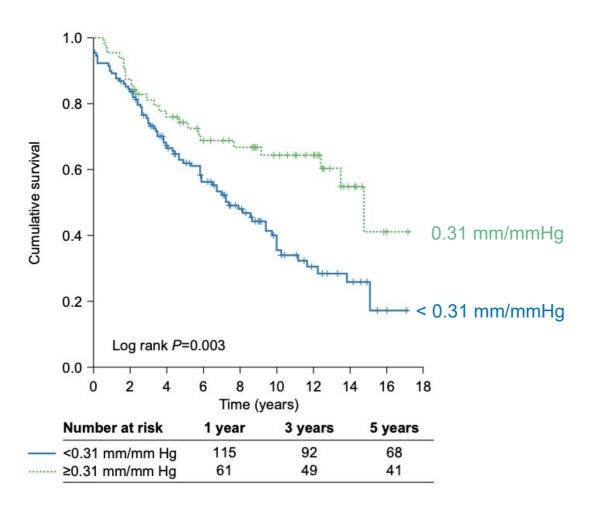
Recommendations for initial therapy

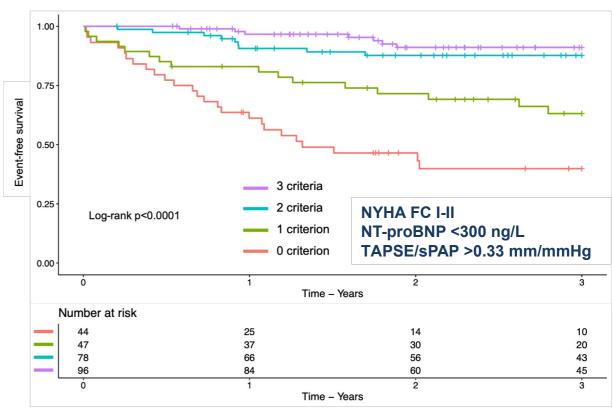
Recommendations for patients without comorbidities

Updated risk stratification table

Recommendations	Class	Level
For risk stratification at the time of diagnosis, the use of a three-strata model		
(low, intermediate, and high risk) is recommended, taking into account all available	- 1	В
data including haemodynamics		

Determinants of prognosis (estimated 1-year mortality)	Low risk <5%	Intermediate risk 5–20%	High risk >20%
Signs of right heart failure	Absent	Absent	Present
Progression of symptoms and clinical manifestations	No	Slow	Rapid
Syncope	No	Occasional syncope	Repeated syncope
WHO-FC	l, II	III	IV
6MWD	>440 m	165–440 m	<165 m
CPET	Peak VO ₂ >15 mL/min/kg (>65% pred.) VE/VCO ₂ slope <36	Peak VO ₂ 11–15 mL/min/kg (35–65% pred.) VE/VCO ₂ slope 36–44	Peak VO ₂ <11 mL/min/kg (<35% pred.) VE/VCO ₂ slope >44
BNP or NT-proBNP	BNP <50 ng/L NT-proBNP <300 ng/L	BNP 50-800 ng/L NT-proBNP 300-1100 ng/L	BNP >800 ng/L NT-proBNP >1100 ng/L
Echocardiography	RA area <18 cm ² TAPSE/sPAP >0.32 mm/mmHg No pericardial effusion	RA area 18–26 cm² TAPSE/sPAP 0.19–0.32 mm/mmHg Minimal pericardial effusion	RA area >26 cm² TAPSE/sPAP <0.19 mm/mmHg Moderate or large pericardial effusion
cMRI	RVEF >54% SVI >40 mL/m² RVESVI <42 mL/m²	RVEF 37–54% SVI 26–40 mL/m ² RVESVI 42–54 mL/m ²	RVEF <37% SVI <26 mL/m² RVESVI >54 mL/m²
Haemodynamics	RAP <8 mmHg CI ≥2.5 L/min/m² SVI >38 mL/m² SvO ₂ >65%	RAP 8–14 mmHg CI 2.0–2.4 L/min/m ² SVI 31–38 mL/m ² SvO ₂ 60–65%	RAP >14 mmHg CI <2.0 L/min/m² SVI <31 mL/m² SVO ₂ <60%

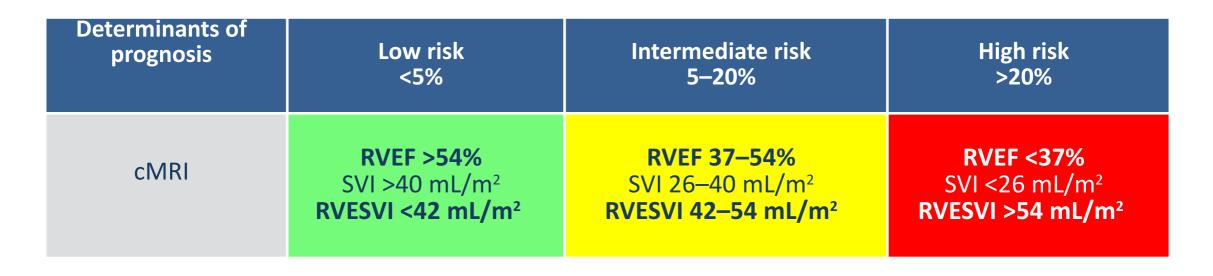

Risk assessment (3-strata model) - changes

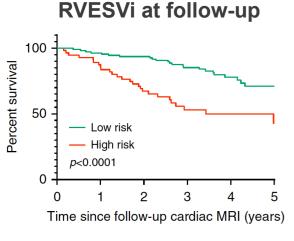

Determinants of prognosis	Low risk <5%	Intermediate risk 5–20%	High risk >20%
Biomarkers: BNP or NT-proBNP	BNP <50 ng/L NT-proBNP <300 ng/L	BNP 50 –800 ng/L NT-proBNP 300 –1100 ng/L	BNP > 800 ng/L NT-proBNP > 1100 ng/L
Echocardiography	RA area <18 cm2 TAPSE/sPAP >0.32 mm/mmHg No pericardial effusion	RA area 18–26 cm2 TAPSE/sPAP 0.19–0.32 mm/mmHg Minimal pericardial effusion	RA area >26 cm2 TAPSE/sPAP <0.19 mm/mmHg Moderate or large pericardial effusion
cMRI	RVEF >54% SVI >40 mL/m ² RVESVI <42 mL/m ²	RVEF 37-54% SVI 26-40 mL/m ² RVESVI 42-54 mL/m ²	RVEF <37% SVI <26 mL/m ² RVESVI >54 mL/m ²
Haemodynamics	RAP <8 mmHg CI \geq 2.5 L/min/m2 SVI >38 mL/m ² SvO ₂ >65%	RAP 8–14 mmHg CI 2.0–2.4 L/min/m2 SVI 31–38 mL/m ² SvO ₂ 60–65%	RAP >14 mmHg CI <2.0 L/min/m2 SVI <31 mL/m ² SvO ₂ <60%

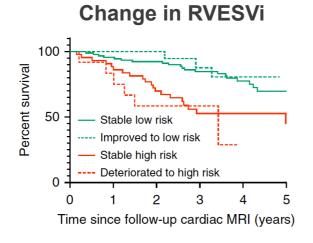
Advanced risk stratification using TAPSE/sPAP (RV-PA coupling) as a prognostic marker

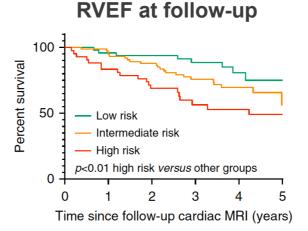
Survival according to TAPSE/sPAP cut-off

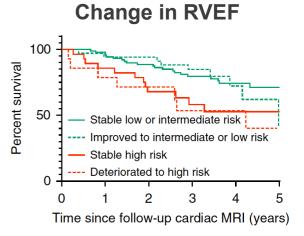
Survival according to the number of non-invasive low-risk criteria achieved at first re-evaluation

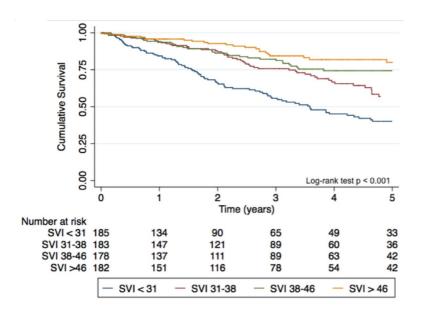


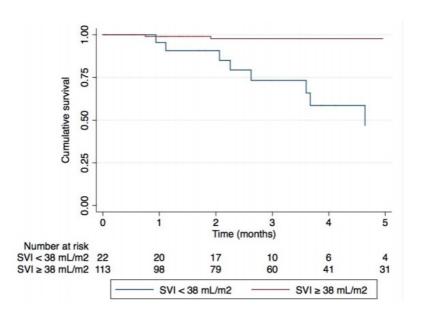

Fauvel C, et al. J Heart Lung Transplant 2022; in press.


Prognostic value of Cardiac MRI: RVESVi and RVEF









Stroke Volume Index is an important prognostic marker

Determinants of prognosis (estimated 1-year mortality)	Low risk	Intermediate risk	High risk
	<5%	5–20%	>20%
Haemodynamics	RAP <8 mmHg	RAP 8–14 mmHg	RAP >14 mmHg
	CI ≥2.5 L/min/m2	CI 2.0–2.4 L/min/m2	CI <2.0 L/min/m2
	SVI >38 mL/m ²	SVI 31–38 mL/m ²	SVI <31 mL/m ²
	SvO2 >65%	SvO2 60–65%	SvO2 <60%

Current therapeutic targets of PAH

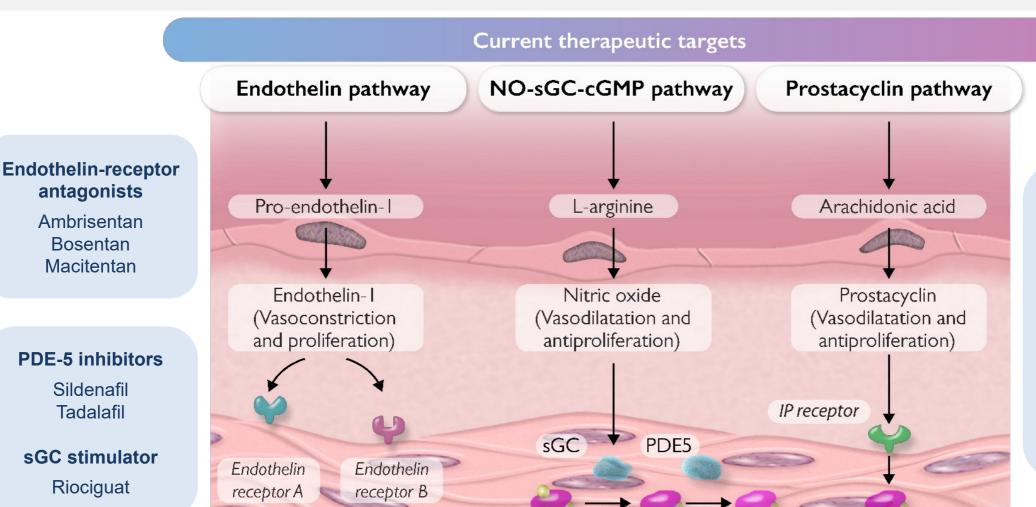
antagonists

Ambrisentan

Bosentan

Macitentan

Sildenafil


Tadalafil

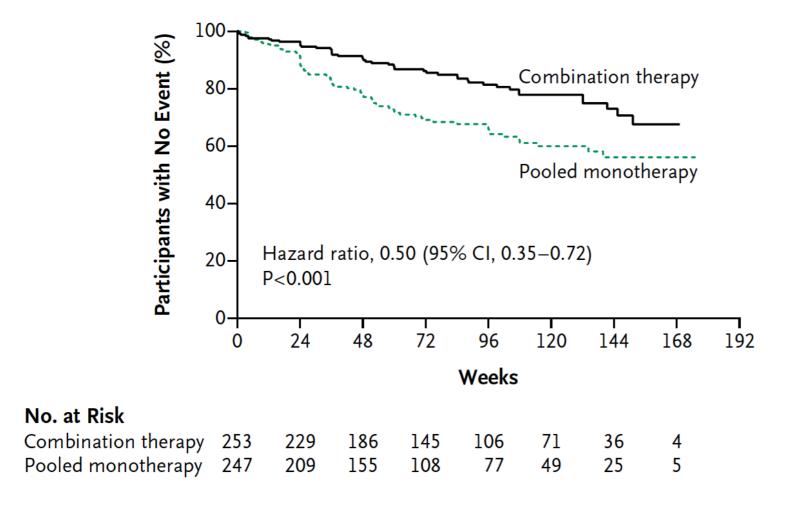
Riociguat

Guidelines 2022

cGMP

GTP

GMP


Prostanoids

Epoprostenol (i.v.) Iloprost (inh., i.v.) **Treprostinil** (s.c., i.v., inh., oral) Beraprost (oral)

Non prostanoids IP receptor agonist Selexipag (oral)

CAMP

INITIAL THERAPY: Initial combination of ambrisentan AND tadalafil is superior to monotherapy with ambrisentan OR tadalafil

- AMBITION study
- N=500 treatment-naïve patients with PAH (31% FC II)
- Primary endpoint = Time to the first occurrence of a composite endpoint of
 - death,
 - hospitalization for PAH worsening,
 - disease progression,
 - or unsatisfactory long-term clinical response

Initial dual oral combination in PAH: A matter of strategy, not a matter of drugs...

	AMBITION– BONSAI* Ambri + tada (n=19)¹	Ambrisentan + Tadalafil in PAH-SSc (n = 24) ²	Joint– INTENTION# Bos + sil (n=23)³	French PH Network ERA + PDE-5i (n=97) ⁴	OPTIMA Macitentan + tadalafil (n=46)⁵	TRITON Macitentan + tadalafil (n=124) ⁶
Δ RAP (%)	- 17	- 28	- 36	- 29	- 4	- 17
∆ mPAP (%)	- 33	- 29 (-12 mmHg)	- 21	- 16 (-10 mmHg)	- 16 (-8 mmHg)	- 23 (-12 mmHg)
Δ CI (%)	+ 56	+ 27 (+0.7 L/min/m²)	+ 63	+ 46 (+1 L/min/m²)	+ 41 (+0.9 L/min/m²)	+ 43 (+0.8 L/min/m²)
Δ PVR (%)	- 61	- 51	- 60	- 43	- 47	- 52
∆ 6MWD (%)	+ 25	+ 15 (+52 m)	+ 42	+ 22 (+71 m)	+ 10 (+36 m)	+ 17 (+56 m)

^{*}BONSAI: BOlogNa Sub-study on hAemodynamIcs #Joint Bologna and Calgary study on INiTial bosENTan plus slldenafil in pulmonary arterial hypertension.

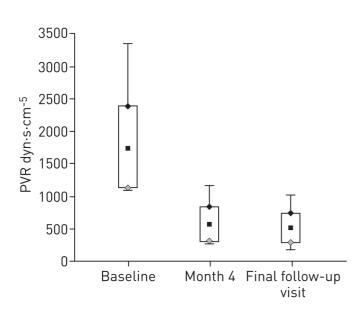
^{1.} Bachetti C *et al. Am J Respir Crit Care Med* 2015;191:A479; 2.Hassoun P, *et al. Am J Respir Crit Care Med* 2015; 192:1102-10; 3. Palazzini M *et al. Am J Respir Crit Care Med* 2016;193:A6317; 4. Sitbon O *et al. Eur Respir J* 2016;47:1727–36; 5. Sitbon O, *et al. Eur Respir J* 2020;56:2000673; 6. Chin K, *et al. J Am Coll Cardiol* 2021;78:1393-1403.

Recommendations for initial therapy in patients with PAH without comorbidities

Recommendations for initial therapy	Class	Level		
Recommendations	Class	Level		
Initial combination therapy with ambrisentan and tada	lafil is recom	mended	1	В
Initial combination therapy with macitentan and tadalafil is recommended GRADE				B
Recommendations	Quality of evidence	Strength of recommendation	Class	Level
In patients with IPAH/HPAH/DPAH who present at low or intermediate risk of death, initial combination therapy with a PDE5i and an ERA is recommended	Low	Conditional	I	В

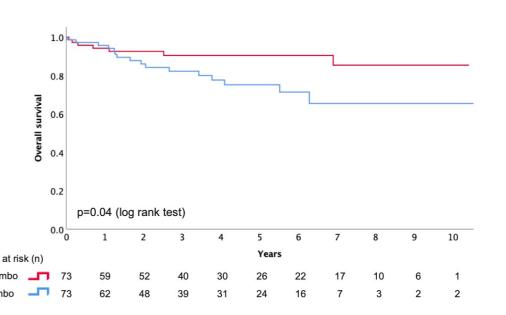
INITIAL THERAPY: Recommendations in patients with PAH without comorbidities

Recommendations for initial therapy

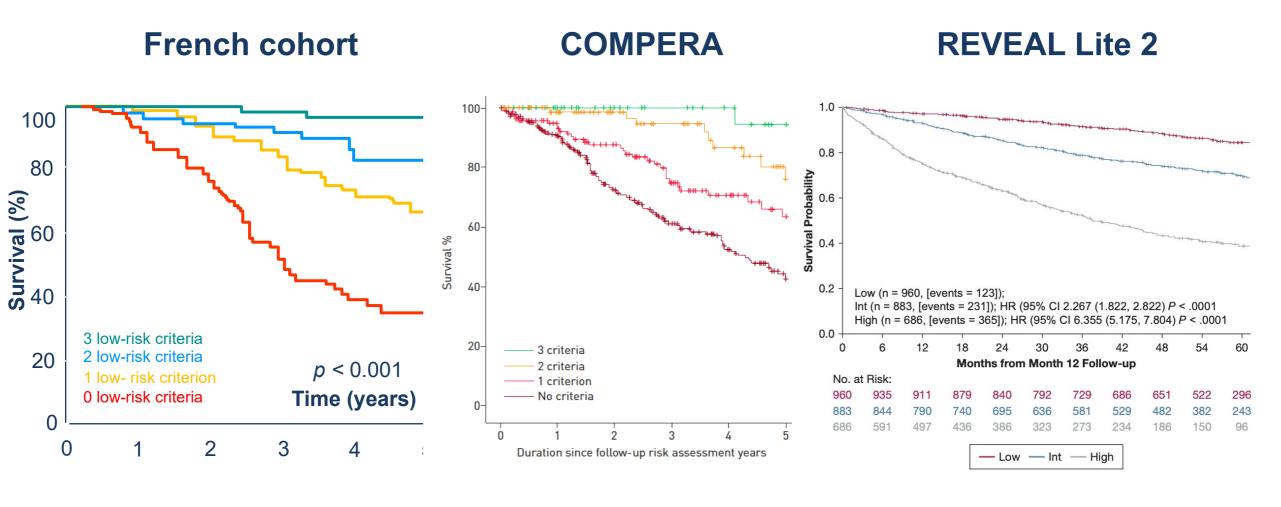

Class |

Level

Patients at high risk of death


In patients with IPAH/HPAH/DPAH who present at high risk of death, initial combination therapy with a PDE5i, an ERA, and i.v./s.c. prostacyclin analogues should be considered

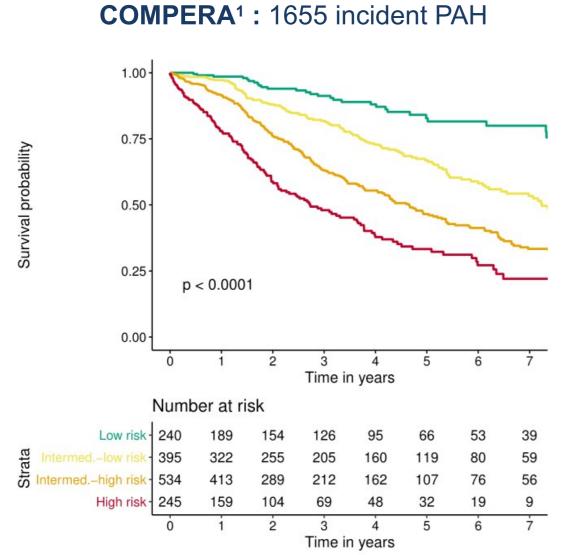
lla



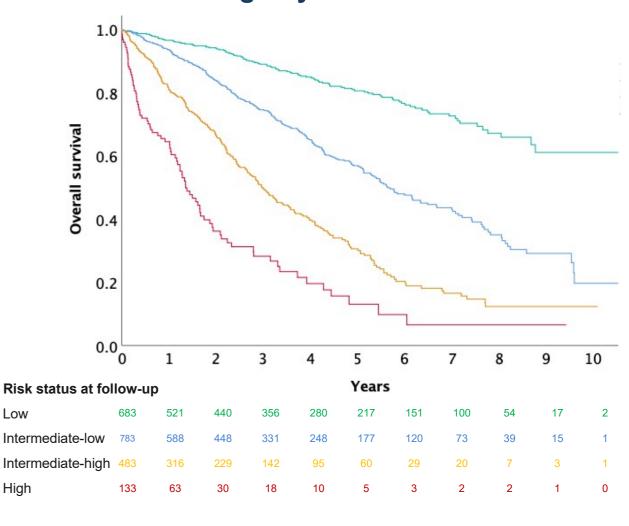
Non invasive assessment (NYHA FC, 6MWD, BNP) is possible

New simplified 4-strata risk-assessment tool

Recommendation	Class	Level	
For risk stratification during follow-up, the use of a four-strata model (low, intermediate-low, intermediate-high, and high risk) based on WHO-FC, 6MWD, and BNP/NT-proBNP is recommended, with additional variables taken into account as necessary	1	В	

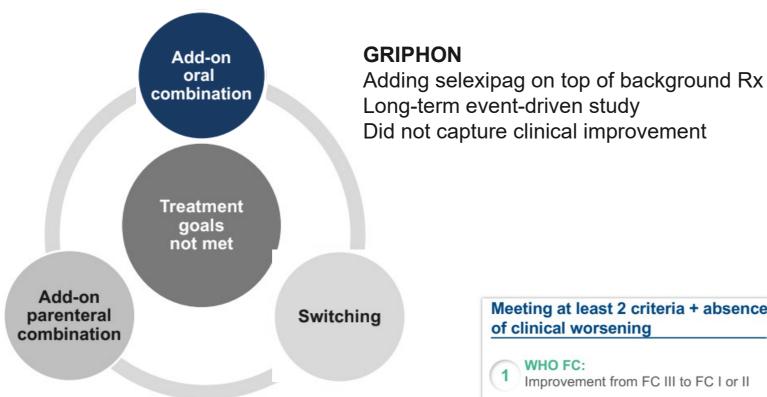

Determinants of prognosis	Low risk	Intermediate- low risk	Intermediate- high risk	High risk
Points assigned	1	2	3	4
WHO-FC	l or II	-	III	IV
6MWD, m	>440	320–440	165–319	<165
BNP or NT-proBNP, ng/L	<50 <300	50–199 300–649	200–800 650–1100	>800 >1100

Recommendation	Class	Level
Achieving and maintaining a low-risk profile on optimized medical therapy is recommended as a treatment goal in patients with PAH	1	В


4-strata risk assessment validated in two large European cohorts

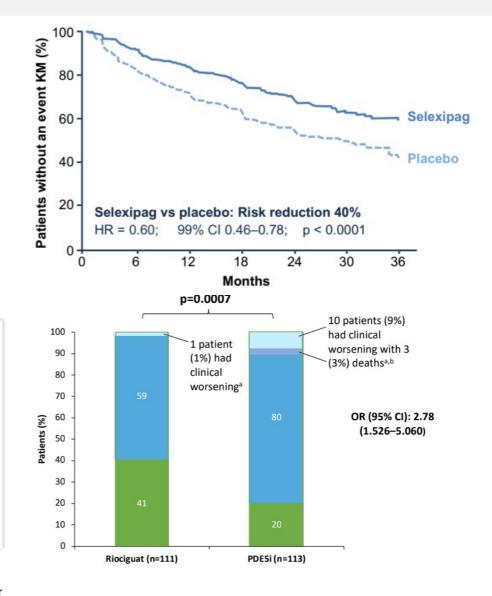
Low

High

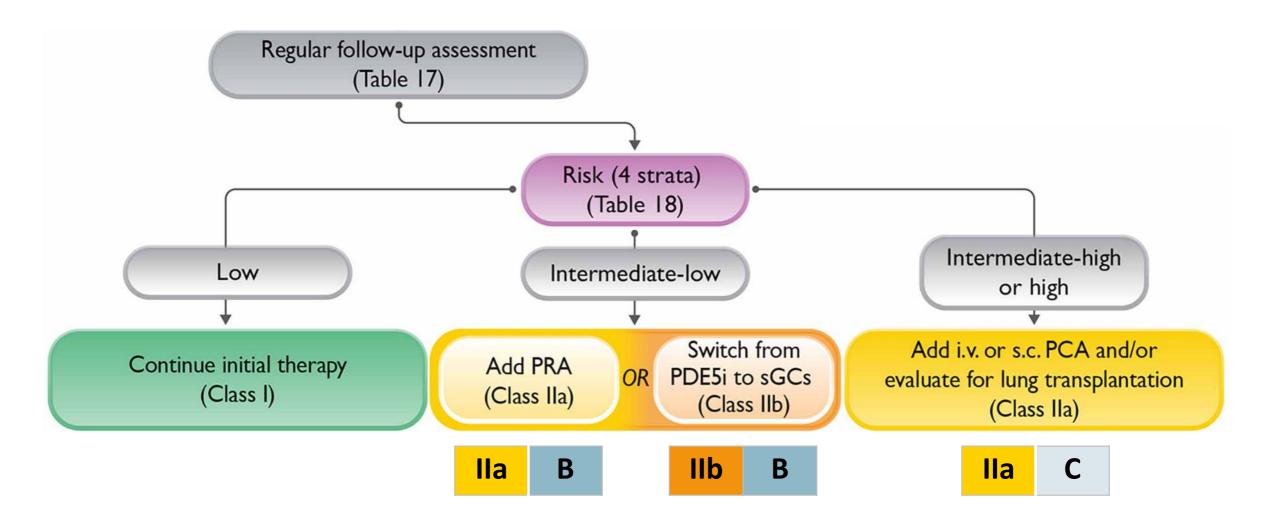


French Registry²: 2879 incident PAH

^{1.} Hoeper, et al, Eur Respir J. 2022; 60: 2102311; 2. Boucly, Weatherald, et al, Eur Respir J. 2022; 59: 2102419.

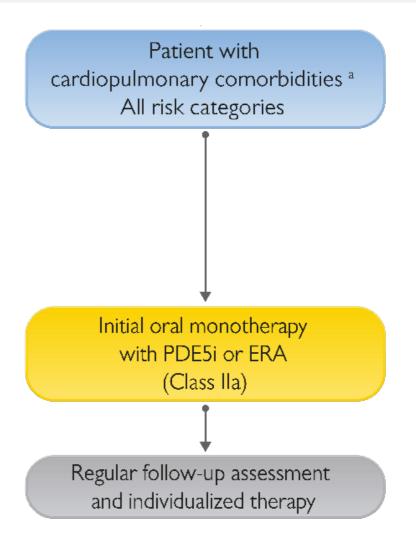

Sequential combination therapy: Combining or switching for treatment escalation?

REPLACE


Switching from PDE-5i to riociguat Multicomponent clinical improvement endpoint Non-blinded study

Recommendations for therapy during follow-up in patients with PAH without comorbidities

Guidelines 2022


Recommendations for patients with comorbidities

Cardiopulmonary comorbidities are conditions associated with an **increased risk of LV diastolic dysfunction**, and include obesity, hypertension, diabetes mellitus, and coronary heart disease;

Pulmonary comorbidities may include signs of mild parenchymal lung disease and are often associated with a low DLCO (<45% of the predicted value)

Recommendations	Class	Level
For initial therapy		
In patients with IPAH/HPAH/DPAH and cardiopulmonary comorbidities, initial monotherapy with a PDE5i or an ERA should be considered	lla	С
During follow-up		
In patients with IPAH/HPAH/DPAH with cardiopulmonary comorbidities who present at intermediate or high risk of death while receiving PDE5i or ERA monotherapy, additional PAH medications may be considered on an individual basis	IIb	С

Unresolved questions...

Guidelines 2022

EUROPEAN RESPIRATORY JOURNAL ERS OFFICIAL DOCUMENTS M. HUMBERT ET AL.

2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)

Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG)

Marc Humbert^{1,2}, Gabor Kovacs^{3,4}, Marius M. Hoeper^{5,6}, Roberto Badagliacca^{7,8}, Rolf M.F. Berger⁹, Margarita Brida^{10,11}, Jørn Carlsen^{12,13}, Andrew J.S. Coats^{14,15}, Pilar Escribano-Subias^{16,17,18}, Pisana Ferrari^{19,20}, Diogenes S. Ferreira²¹, Hossein Ardeschir Ghofrani^{22,23,24}, George Giannakoulas²⁵, David G. Kiely^{26,27,28}, Eckhard Mayer²⁹, Gergely Meszaros^{19,30}, Blin Nagavci³¹, Karen M. Olsson³², Joanna Pepke-Zaba³³, Jennifer K. Quint³⁴, Göran Rådegran^{35,36}, Gerald Simonneau^{37,38}, Olivier Sitbon^{2,37,39}, Thomy Tonia⁴⁰, Mark Toshner⁴¹, Jean-Luc Vachiery⁴², Anton Vonk Noordegraaf⁴³, Marion Delcroix^{44,46}, Stephan Rosenkranz^{45,46} and the ESC/ERS Scientific Document Group

ESC/ERS GUIDELINES

2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS).

Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG).

Authors/Task Force Members: Marc Humbert (France), Gabor Kovacs (Austria), Marius M. Hoeper (Germany), Roberto Badagliacca (Italy), Rolf M.F. Berger (Netherlands), Margarita Brida (Croatia), Jørn Carlsen (Denmark), Andrew J.S. Coats (United Kingdom), Pilar Escribano-Subias (Spain), Pisana Ferrari (Italy), Diogenes S. Ferreira (Brazil), Hossein Ardeschir Ghofrani (Germany), George Giannakoulas (Greece), David G. Kiely (United Kingdom), Eckhard Mayer (Germany), Gergely Meszaros (Hungary), Blin Nagavci (Germany), Karen M. Olsson (Germany), Joanna Pepke-Zaba (United Kingdom), Jennifer K. Quint (United Kingdom), Göran Rådegran (Sweden), Gerald Simonneau (France), Olivier Sitbon (France), Thomy Tonia (Switzerland), Mark Toshner (United Kingdom), Jean-Luc Vachiery (Belgium), Anton Vonk Noordegraaf (Netherlands), Marion Delcroix (ERS Chairperson) (Belgium), Stephan Rosenkranz (ESC Chairperson) (Germany), and ESC/ERS Scientific Document Group

Why two different scores at diagnosis and during follow-up?

The main advantage of **the four-strata model** over the three-strata model is **better discrimination within the intermediate-risk group**, which helps guide therapeutic decision-making.

However, the three-strata model is maintained for initial assessment, which should be comprehensive and include echocardiographic and haemodynamic variables, for which cut-off values for the four-strata model have yet to be established

Which place for invasive haemodynamic evaluation at follow-up?

Suggested assessme	ent and timing	for the follow-	up of patients	with PAH
	At baseline	3–6 months after changes in therapy	Every 3–6 months in stable patients	In case of clinical worsening
Medical assessment (including WHO-FC)				
6MWT				
Blood test (including NT-proBNP)				
ECG				
Echocardiography or cMRI				
ABG or pulse oximetry				
Disease-specific HR-QoL				
CPET				
RHC				

At follow-up, the four-strata model (based on WHO-FC, 6MWT and NT-proBNP) is recommended as a basic risk-stratification tool, but **additional variables should be considered as needed**, especially right heart imaging and **haemodynamics**.

Which place for other risk scores?

Recommendations	Class	Level
For risk stratification at the time of diagnosis, the use of a three-strata model (low, intermediate, and high risk) is recommended, taking into account all available data including haemodynamics	1	В
For risk stratification during follow-up, the use of a four-strata model (low, intermediate-low, intermediate-high, and high risk) based on WHO-FC, 6MWD, and BNP/NT-proBNP is recommended, with additional variables taken into account as necessary	1	В

Recommendations	Class	Level
It is recommended that potentially eligible candidates are referred for LTx evaluation when they have an inadequate response to oral combination therapy, indicated by an intermediate-high or high risk or by a REVEAL risk score >7	ı	С
It is recommended to list patients for LTx who present with a high risk of death or with a REVEAL risk score ≥10 despite receiving optimized medical therapy including s.c. or i.v. prostacyclin analogues	1	С

Last but not least... The issue of comorbidities

- Cardiopulmonary comorbidities are conditions associated with an increased risk of LV diastolic dysfunction, and include obesity, hypertension, diabetes mellitus, and coronary heart disease
 - Number of comorbidities should be considered
 - Control of comorbidities should be considered
 - Relationship between PVR level and comorbidities (group 1 vs. group 2)
- Pulmonary comorbidities may include signs of mild parenchymal lung disease and are often associated with a low DLCO (<45% of the predicted value)
 - Do we have to call this phenotype group 3 PH? PVOD?

Treatment algorithm in PAH: Take-Home Messages

The **treatment algorithm** for PAH has been simplified, with a clear focus on risk assessment, cardiopulmonary comorbidities, and treatment goals.

Initial combination therapy and treatment escalation at follow-up when appropriate are current standards.

The importance of PAH **patient phenotypes** and the relevance of **comorbidities** on treatment goals and outcomes must be further evaluated

Grazie per l'attenzione

