

Interstitial Lung Abnormalities a clinical point of view

Sara Tomassetti, MD
Florence University
Italy

COI

Speaker's fees from Boehringer Ingelheim,
 Roche, ERBE, PulmoniX

Interstitial Lung Abnormalities a clinical point of view

ILA definition and prevalence

ILA definition, prevalence and relevance

Imaging abnormalities on chest CT in research participants without a clinical diagnosis of interstitial lung disease.

What are interstitial lung abnormalities (ILAs)?

- Incidental identification of non-dependent abnormalities, including ground-glass or reticular abnormalities, lung distortion, traction bronchiectasis, honeycombing, and non-emphysematous cysts
- Involving at least 5% of a lung zone (upper, middle, and lower lung zones are demarcated by the levels of the inferior aortic arch and right inferior pulmonary vein)
- In individuals in whom interstitial lung disease is not suspected

ILA are present in 7% of individuals undergoing lung cancer screening.

Review

> Radiol Clin North Am. 2022 Nov;60(6):889-899. doi: 10.1016/j.rcl.2022.06.002.

Epub 2022 Sep 3.

Interstitial Lung Abnormality-Why Should I Care and What Should I Do About It?

Andrea S Oh 1, David A Lynch 2

Affiliations + expand

PMID: 36202476 DOI: 10.1016/j.rcl.2022.06.002

Abstract

Interstitial lung abnormalities (ILAs) are specific computed tomography (CT) findings that are potentially compatible with interstitial lung disease (ILD) in patients without clinical suspicion for disease. ILAs are associated with adverse clinical outcomes including increased mortality, imaging progression and lung function decline, and increased lung injury risk with lung cancer therapies. It is expected that identification of ILAs will increase with implementation of lung cancer screening and diagnostic CT imaging for workup of other pathologies. As such, radiologists will play a critical role in the diagnosis and management of ILAs.

ILA definition, prevalence and relevance

	Population-based cohorts				Smoking and lung cancer screening cohorts				
	MESA ^{11,12,13,14}	Nagano, Japan*15	FHS ^{6,8,9}	AGES- Reykjavik ⁹	ECLIPSE ⁹	NLST ^{7,16}	COPDGene ^{4,9,17}	MILD ¹⁸	DLCST ¹⁹
Study characteristics									
Total number of chest CT scans evaluated	3137	3061	2633	5320	1670	884	9292	692	1990
Prevalence of ILAs	310 (10%)	80 (3%)	177 (7%)	377 (7%)	157 (9%)	86 (10%)	708 (8%)	28 (4%)	332 (17%)
Mean age of those with ILAs (years)	75	62	70	78	64	62	64	60	60
Radiological progression									
Overall progression, follow-up time	NA	46%, 4 years	43%, 6 years	63%, 5 years	NA	20%, 2 years	NA	20%, 2 years	NA
Mortality									
Relative risk of death, (hazard ratio [95% CI])	NA	NA	2·7 (1·1–6·5)	1·3 (1·2-1·4)	1·4 (1·1–2·0)	NA	1·8 (1·1–2·8)	NA	2·0 (1·4-2·7)
LAs=interstitial lung abnormaliti	es. NA=not avail	able. *Patients	s participating	in a health scre	ening programr	ne from Nagano	o prefecture, Japar	١.	
Table: Interstitial lung abnorn	10.0								

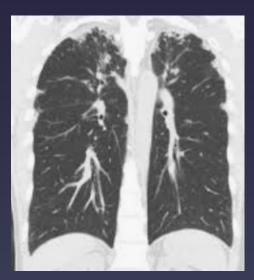
ILA mortality for respiratory causes

ILA are more likely to die of RESPIRATORY CAUSES (OR, 2.4 [95% CI, 1.7-3.4]; P < .001) WITH AN INCREASED RATE OF DEATH FROM PULMONARY FIBROSIS.

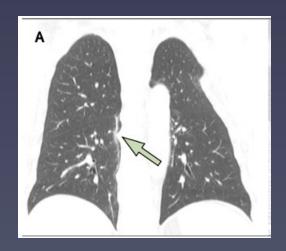
	No. (%) ^a						
	ILA	Indeterminate	No ILA	Overall			
No. of participants	378	1726	3216	5320			
Deaths							
Total	115 (100)	382 (100)	468 (100)	965			
Cardiovascularb	48 (42)	161 (42)	204 (44)	413			
Cancer ^c	29 (25)	111 (29)	151 (32)	291			
Respiratory ^d	15 (13)	22 (6)	20 (4)	57			
Pulmonary fibrosis	7	1	0	8			
Other	8	21	20	49			
Other ^e	23 (20)	88 (23)	93 (20)	204			

ILA definition: When it's NOT ILA

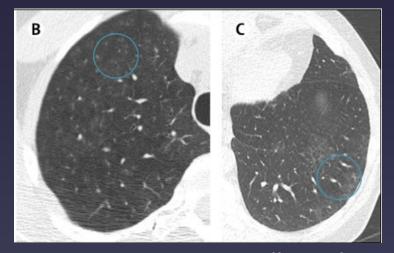
It's not ILAs – clinical criteria for exclusion


- Abnormalities identified during screening for ILD in high-risk groups (eg, those with rheumatoid arthritis, systemic sclerosis, or familial ILD), <u>NOT INCIDENTAL</u>
- Known ILD diagnosed as clinical-radiologicalpathological entity based on current guidelines criteria.
- The term ILAs does not imply the absence of respiratory signs, symptoms, or functional impairment, but when these clinically significant findings are present, ILAs are likely to the fessent findings are present.

It's not ILAs – radiologic criteria for exclusion



Lung dependent changes

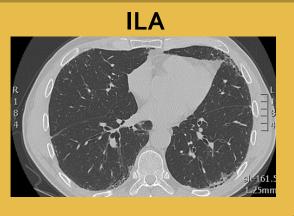

Interstitial edema

PPFE

Focal paraspinal fibrosis.

Centrilobular nodularity in a heavy smoker.

Unilateral mild focal abnormality Ggo
Tree in bud (aspiration)


Hatabu et al, LRM 2020

The boarders: ILA, early ILD and mild ILD

TABLE 1	TABLE 1 Simplified definitions									
Entity		Population	Diagnostic criteria	Definition						
ILA		Only individuals without known or suspected ILD#	Clinical-radiological entity	Incidental finding of CT abnormalities affecting more than 5% of any lung zone						
Early ILD	Pre-clinical ILD Subclinical ILD	Individuals at risk for ILD Individuals NOT at risk for ILD	Clinical-radiological- pathological entity	Any ILD in asymptomatic patients with preserved lung function						
Mild ILD		All individuals	Clinical-radiological- pathological entity	Any clinically significant ILD with minor symptoms and/or trivial PFT abnormalities						

ILA: interstitial lung abnormalities; ILD: interstitial lung disease; CT: computed tomography; PFT: pulmonary function test. *: abnormalities identified during screening for ILD in high-risk groups (e.g. those with rheumatoid arthritis, systemic sclerosis or familial ILD) are not considered as ILA because they are not incidental.


Incidental discovery FVC 129%, DLco 82% No symptoms Tomassetti S et al, ERR 2022

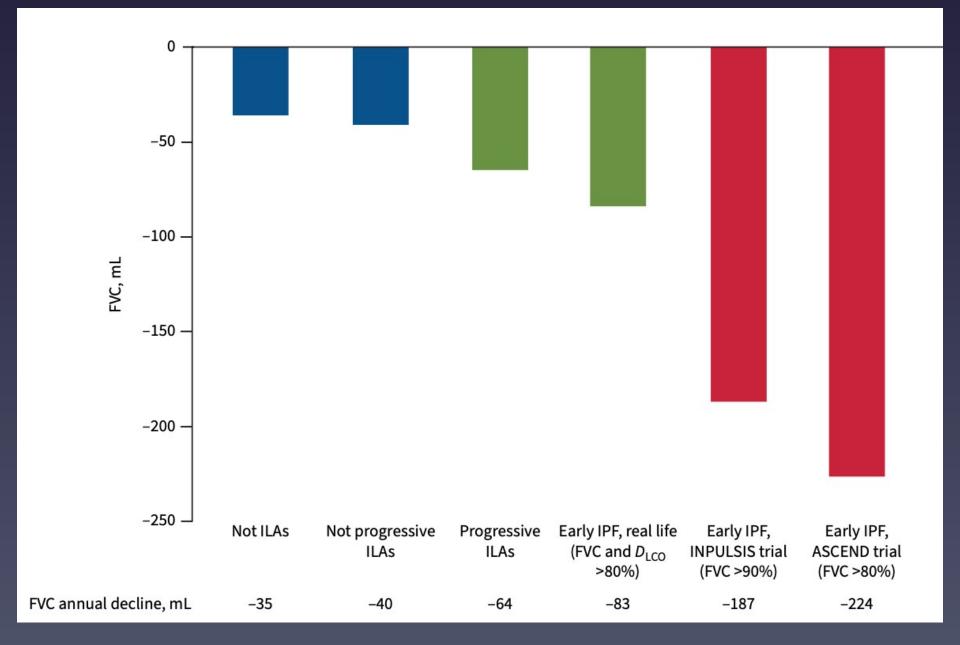
MDT diagnosis: Early IPF

UIP pattern on histology

Mild IPF

FVC 122%, DLco 73%, asymptomatic

Advanced IPF

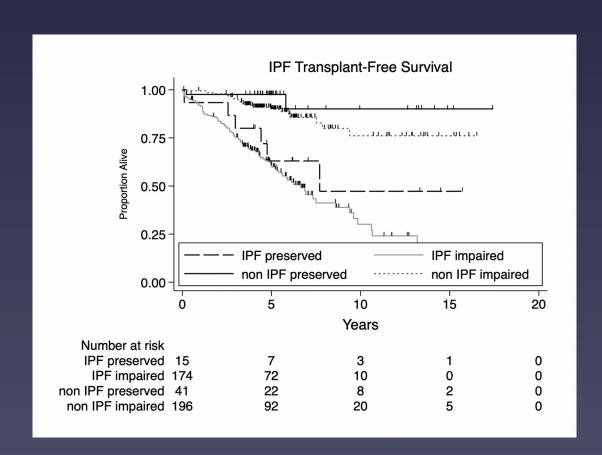


FVC 60%, DLco 40&%, symptomatic

baseline

2 years of follow-up

7 years of follow-up



Tomassetti S et al, ERR 2022

Histologic UIP discriminates prognosis of f-ILDs with completely preserved lung function

Preserved LF:

- FVC and DLco >80%, no desat WT
- IPF defined MD and by UIP on TBLC
- NON-IPF included:
 - NSIP, N=68
 - CHP, N= 53
 - SR-ILD, N=42
 - Other fibr, N=74

Clinical features of ILA

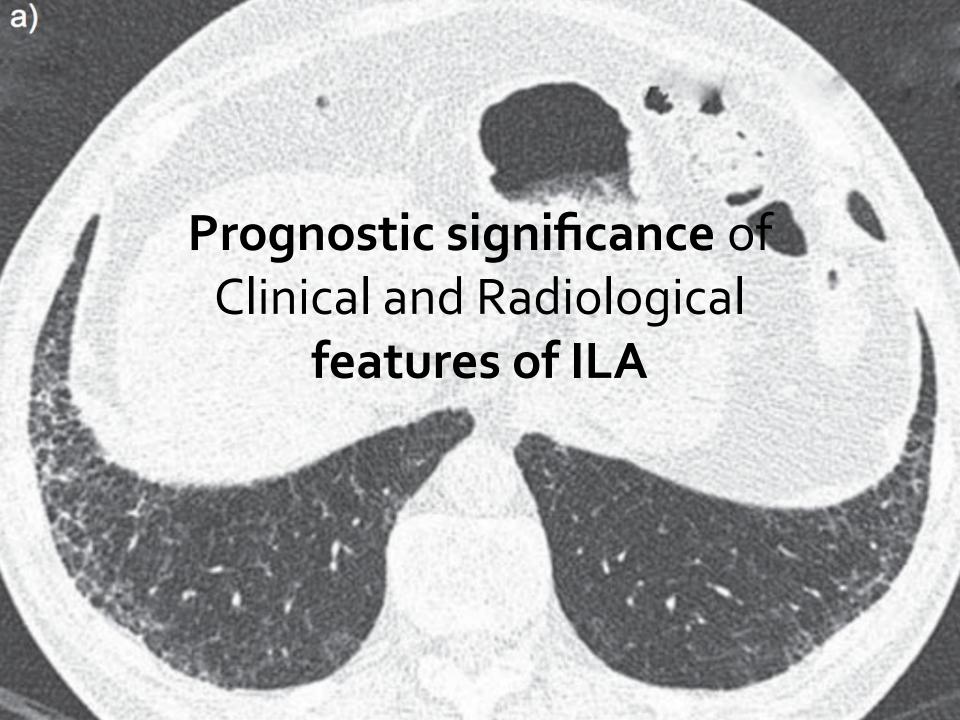
		Percen	ropriate a	and Noted			
		Resea	rch Subjects w	ith ILA			
Variable	MESA*	Nagano, Japan [†]	COPDGene [‡]	MILD§	FHS	NLST ¹	Patients with IPF**
Demographic parameters	,						
Age, yr	_	62	64	60	70	62	66
Sex, female, %	_	26	50	14	52	28	41–49
History of smoking, current or	_	70	100	100	62	100	60–72
former, %							
Respiratory symptoms, %							
Chronic cough, yes	_	13	41	_	12	_	73–86
Chronic shortness of breath, yes	_	15	60	_	18	_	Present in most patients
Physical examination findings							,
Fine crackles, %	_	26	_	_	_	_	Present in most patients
Pulmonary physiologic testing							, , , , , , , , , , , , , , , , , , ,
FVC % predicted	_	113-116	88	101	101	_	68-89
Total lung capacity % predicted	_	_	95	_	79	_	46–78
Diffusion capacity of carbon monoxide, % predicted	_		_	_	86	-	46–61
6-min walk distance, m	_	555-573	403	_	_	_	373-392

Novel insights on clinical features of ILAs

- ILA in a large health check-up population (155,539 individuals undergoing low-dose chest CT scans during routine health check-up), 2.1% had ILA
- mean age was 46.1±14.0 years,
- 60.7% male,
- 32.3% smoking history,
- 27.2% comorbidities

ILA prevalence increases with age

	Total ILA
	(N=3,300)
Age (years)	62.1±13.8
<40	113 (3.4)
40-49	543 (16.5)
50-59	855 (25.9)
60-69	712 (21.6)
≥70	1077 (32.6)


Zhang et al, AJRCCM 2021

hiatus ernia and ILA: pathogenetic links versus epiphenomenon of senescence

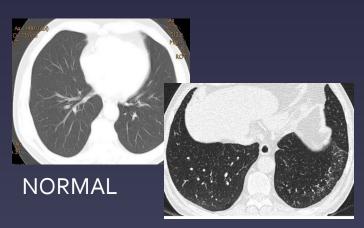
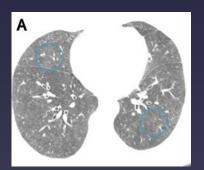

- AGES-Reykjavik study (5000individuals): hiatus hernia was not associated with presence or progression of ILA, but with increased mortality.*
- In contrast in the MESA study hiatus hernia was associated to ILA
 (OR 1.69) in participants <80 years (OR 1.78), and higher MMP-7

TABLE 1 Association between MESA Exam 5 (2010–2012) hiatus hernia and interstitial lung abnormalities (ILA) from Exam 5 full-lung computed tomography scans (2010–2012) with covariate adjustment							
p-value							
0.004							
0.006							
0.007							
0.006							
0.02							
0.02							
0.46							

George et al, ERJ 2023; ^Kim et al. ERJ 2023; *George et al, ERJ 2020

The spectrum of radiological abnormalities

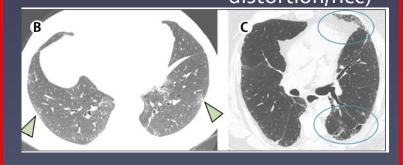
INDETERMINATE (<5%)


a)

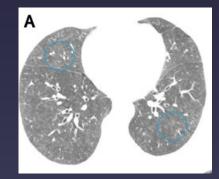
HRCT concordant readings 57%-66%. ILA (>5%) Discordant readings involve mainly indeterminate HRCTs 95%-98%. Discrepancy in ILAs readings is rare (1%-5%).

ILA non fibrotic Kappa 0.3 ILA fibrotic Kappa 0.6 ILA UIP Kappa 1

ILA kappa o.74 ILA subtypes o.38



ILA subpleural


48-95% non fibrotic (ggo/ret)

5-30% fibrotic (TB/arch distortion/hcc)

ILA prognostic subcategories

ILAs with a nonsubpleural distribution are usually nonprogressive and not associated with increased mortality.

ILA with centrilobular nodules

Progression Adjusted HR 0.2 (95% Cl 0.1-0.5), p=0.0002

Mortality Adjusted HR 0.9 (95% Cl 0.7-1.1), p 0.3

ILA subpleural

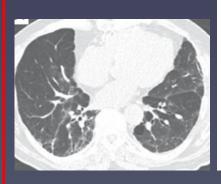
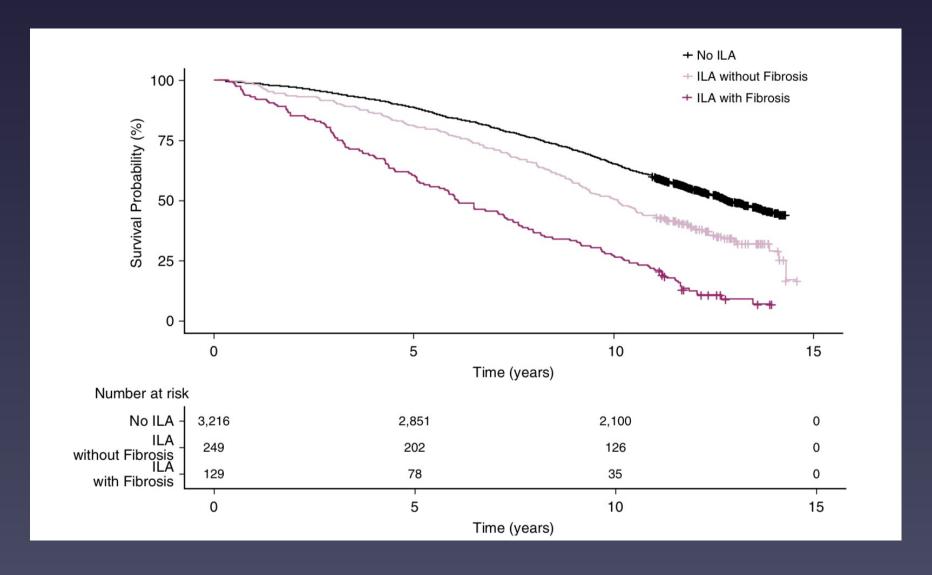
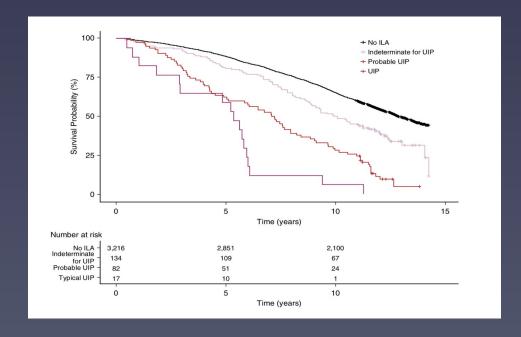



Table 4. Association between Imaging Pattern and Features and Mortality*

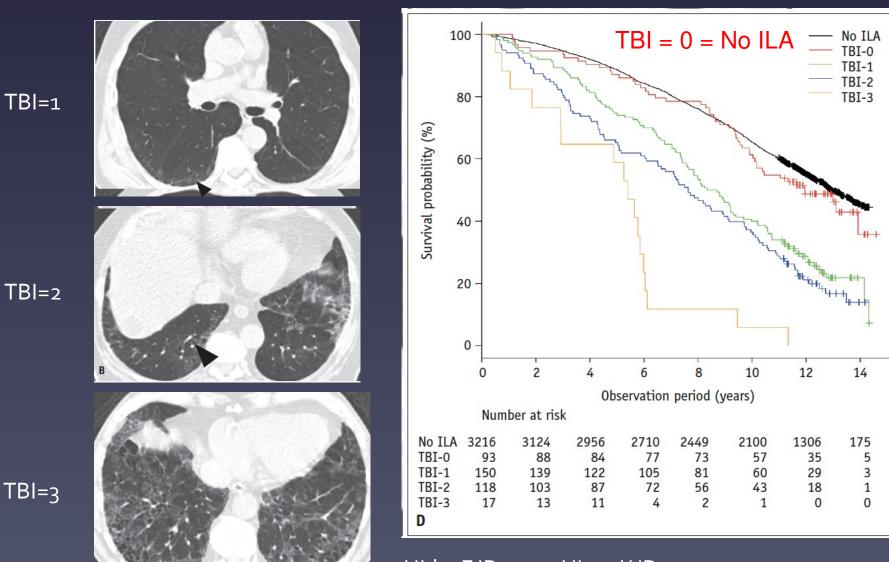
	Unadjusted A	nalysis	Adjusted Analysis [†]		
	HR (95% CI)	P Value	HR (95% CI)	P Value	
Reticular markings Centrilobular nodules Nonemphysematous cysts Traction bronchiectasis Lower lobe [‡] predominance Subpleural location [§]	2.0 (1.3–3.1) 0.7 (0.6–0.9) 1.7 (1.3–2.2) 2.0 (1.6–2.6) 1.5 (0.95–2.5) 2.0 (1.3–3.2)	0.002 0.01 <0.0001 <0.0001 0.08 0.003	1.6 (1.0–2.5) 0.9 (0.7–1.1) 1.4 (1.1–1.8) 1.6 (1.3–2.1) 1.1 (0.6–1.7) 1.6 (1.0–2.7)	0.049 0.3 0.02 0.0001 0.8 0.050	

The definite fibrosis pattern was associated with a 70% increase in the risk of death (HR 1,7, 95% CI 1.3-2.1, p<0.0001) and with the highest risk of progression (odds ratio, 8.4; 95% confidence interval, 2.7-25; P = 0.0003).


Putman R et al, AJRCCM 2019

Probable UIP and UIP pattern were associated with an increased risk

of death


Table 4. Association between Imaging Pattern and Features and Mortality*

	Unadjusted A	Analysis	Adjusted Analysis [†]			
	HR (95% CI)	P Value	HR (95% CI)	P Value		
ILA without fibrosis Definite fibrosis Indeterminate for UIP Probable UIP pattern UIP pattern	1.3 (1.2–1.4) 1.9 (1.7–2.1) 1.6 (1.3–2.0) 3.3 (2.6–4.2) 6.9 (4.2–11)	<0.0001 <0.0001 <0.0001 <0.0001 <0.0001	1.2 (1.1–1.3) 1.5 (1.3–1.6) 1.2 (0.98–1.5) 1.9 (1.5–2.5) 4.5 (2.8–7.2)	0.0004 <0.0001 0.07 <0.0001 <0.0001		

Putman R et al, AJRCCM 2019

The traction bronchiectasis index (TBI) can stratify the prognoses of patients with ILAs

Hida, EJR 2020; Hino, KJR 2020

> Radiology. 2022 Oct 11;221172. doi: 10.1148/radiol.221172. Online ahead of print.

Prevalence and Long-term Outcomes of CT Interstitial Lung Abnormalities in a Health Screening Cohort

```
Jong Eun Lee * 1, Kum Ju Chae * 1, Young Ju Suh 1, Won Gi Jeong 1, Taebum Lee 1, Yun-Hyeon Kim 1, Gong Yong Jin 1, Yeon Joo Jeong 1
```

Affiliations + expand

PMID: 36219115 DOI: 10.1148/radiol.221172

Radiology FULL
ACTIONS

Cite

Pavorites

SHARE

FULL TEXT LINKS

This observational, retrospective multicenter study included patients aged 50 years or older who underwent chest CT at three health screening centers over a 4-year period (2007-2010). 2765 included patients (mean age, 59 years ± 7 [SD]; 2068 men), 94

(3%) had a finding of ILA (35 nonfibrotic and 59 fibrotic ILA) and 119 (4%) had equivocal ILA

Those with fibrotic and nonfibrotic ILA had a higher mortality rate than those without ILA (P < .001 and P = .01, respectively) over 12 years.

Fibrotic ILA was independently associated with:

- (hazard ratio [HR], 10.3; 95% CI: 6.4, 16.4; P < .001),
- development (HR, 4.4; 95% CI: 2.1, 9.1; *P*< .001),
- disease-specific mortality (HR, 6.7; 95% CI: 3.7, 12.2; P < .001),
- and all-cause mortality (HR, 2.5; 95% CI: 1.6, 3.8; P < .001) compared with no II A.

Subpleural "non-fibrotic" (=reticular) ILA can be progressive

513 non fibrotic ILA (=bibasal reticulation in the absence of traction bronchiectasis/hcc):

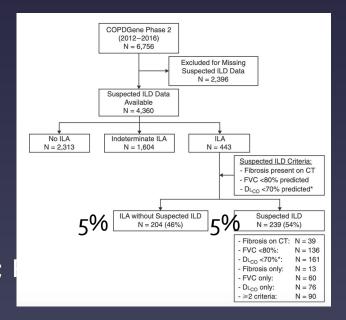
- > 186 (36.3%) stable
- > 108 (21%) regression

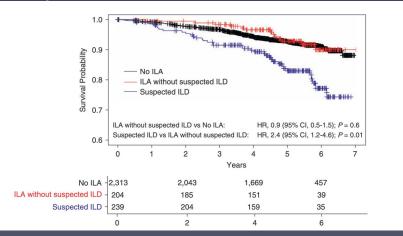
Zhang et al, AJRCCM 2021

- > 219 (42.7%) progressed
 - > 54 (24.7% of progressive and 10.5% of the total) newly reticulation
 - > 12 (5.5% of progressive and 2.3% of the total) progressed into newly FIBROSIS

Individuals with progressive non-fibrotic ILA were significantly older (67.7 \pm 12.0 vs. 61.9 \pm 9 12.6, P<0.0001) and more likely to be former smokers (13.5% vs. 5.6%, P=0.0097).

ILA clinical phenotypes by age


	Total ILA	Non-fibrotic	Fibrotic	D 1 4
	(N=3,300)	(N=3,117)	(N=183)	P value *
Age (years)	62.1±13.8	61.7±13.7	69.4±12.2	<0.0001†
				<0.0001†
<40	113 (3.4)	109 (3.5)	4 (2.2)	
40-49	543 (16.5)	532 (17.1)	11 (6.0)	
50-59	855 (25.9)	836 (26.8)	19 (10.4)	
60-69	712 (21.6)	665 (21.3)	47 (25.7)	
≥70	1077 (32.6)	975 (31.3)	102 (55.7)	


Clinically, when it's not ILA but a suspected ILD the prognosis is worse

Suspected ILD defined as ILA and at least one additional criterion:

- definite fibrosis on computed tomography,
- FVC less than 80% predicted, or D_{LCO} less than 70% predicted suspected ILD was associated with Increased St. George's RQ score [MD], 3.9; reduced 6MWT (MD, 235 m; P = 0.002), greater O2 use [OR], 2.3; P = 0.03) respiratory exacerbations (OR, 2.9; P = higher mortality (HR, 2.4; P = 0.01)

Risk factors associated with suspected Black race (OR, 2.0; P = 0.01) PY smoking history (OR, 1.2; P = 0.000

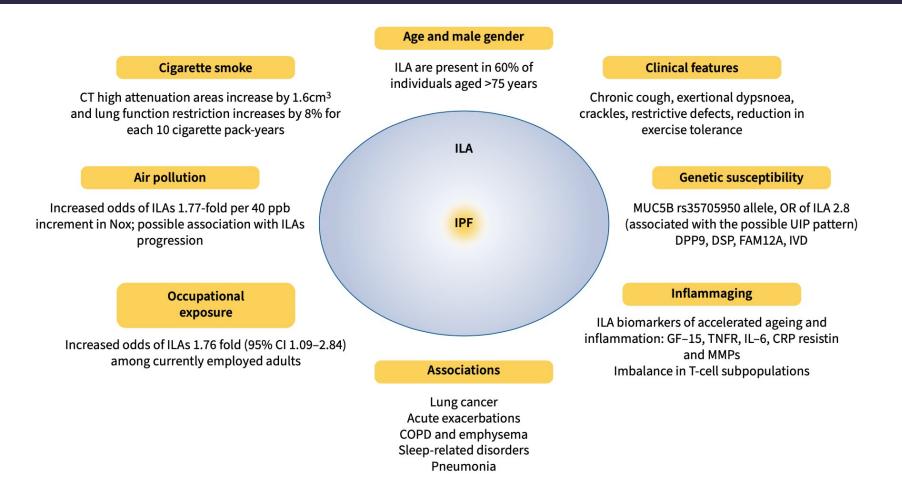
TABLE 2 Interstitial lung abnormality (ILA) risk factors for progression and mortality								
	ILA progression	Mortality	First author [ref.]					
Age, years	OR 1.14 (95% CI 1.11-1.17)		Araki [15]					
MUC5B (rs35705950)	OR 2.8 (95% CI 1.7-4.4)		Araki [15]					
Progressive ILA		HR 3.9 (95% CI 1.3-10.9)	Araki [15]					
HRCT predictors								
Subpleural reticular markings	OR 6.6 (95% CI 2.3-19)	OR 1.6 (95% CI 1.0-2.5)	Putman [31]					
Traction bronchiectasis	OR 6.6 (95% CI 2.3-19)	OR 1.6 (95% CI 1.3-2.1)	Putman [31]					
Traction bronchiectasis score 1		HR 2.18 (median OS 8.5 years)	HIDA [32]					
Traction bronchiectasis score 2		HR 2.65 (median OS 7.7 years)	HIDA [32]					
Traction bronchiectasis score 3		HR 6.8 (median OS 5.4 years)	HIDA [32]					
Subpleural location	OR 6.6 (95% CI 2.3-19)	OR 1.6 (95% CI 1.0-2.7)	Putman [31]					
Lower lobes predominant changes	OR 6.7 (95% CI 1.8-25)	NS	Putman [31]					
Indeterminate for UIP		NS	Putman [31]					
Probable UIP		OR 1.9 (95% CI 1.5-2.5)	Putman [31]					
Definite UIP		OR 4.5 (95% CI 2.8-7.2)	Putman [31]					

Traction bronchiectasis score: 0=absence; 1=bronchiolectasis only; 2=mild moderate traction bronchiectasis; 3=severe traction bronchiectasis and/or honeycombing. OR and hazard ratio (HR) on adjusted multivariable analysis. HCRT: high-resolution computed tomography; HR: hazard ratio;

NS: nonsignificant when p>0.05; OS: overall survival; UIP: usual interstitial pneumonia.

Interstitial Lung Abnormalities: An Evolving Entity.

Tomassetti S, Wells A.


Am J Respir Crit Care Med. 2022 May 10. doi: 10.1164/rccm.202204-0676ED. Online ahead of print.

PMID: 35536727 No abstract available.

Progressive ILA, current understanding:

- Both fibrotic and non fibrotic subpleural (IPF-like distribution ILA) can be progressive.
- In non fibrotic ILA risk factors for progression are older age and smoke.
- In fibrotic ILA fibrosis extent and UIP correlate with prognosis.

Precision medicine: ILA links with IPF and biologic significance

MUC5B Is Associated with Specific ILA Subtypes

Putman RK, ERJ 2017

OR 4.4; 95% Cl 2.2-9.0, p 4x10-5

MUC5B genotype is associated with subpleural ILA and a possible UIP

OR 2.7; 95% CI 2.3-3.2, p 1x10-30 OR 0,91;95%

Radiologic ILD

Genome-wide significant variants associated with ILA and IPF

Chromosome/ Location	Position	rrID.	Risk Allele	Risk Allele	Nearest	ILA* vs N	No ILA	Subpleural IL	A vs No ILA	Replicatio Coh	
	Position	rsID	KISK Allele	Frequency	Gene	Odds Ratio‡ (95% CI§)	P-Value	Odds Ratio (95% CI)	P-Value	Odds Ratio (95% CI)	P-Value
11p15	1241221	rs35705950	т	0.11	мисѕв	1.97 (1.74, 2.22)	3 x 10 ⁻²⁷	2.22 (1.93, 2.55)	2 x 10 ⁻²⁹	4.84 (4.37, 5.36)	1 x 10 ⁻²⁰³

^{*} ILA is interstitial lung abnormalities

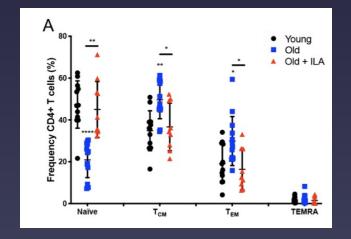
§CI is confidence interval

There was a substantial enrichment of the 12 IPF GWAS loci in our ILA association results:

- ✓ 5 SNPs near *DPP9*, *DSP*, *FAM13A*, *IVD*, and *MUC5B* were significantly associated (p < 4.2x10-3) with ILA
- ✓ 2 SNPs at MAPT and LRRC34, were nominally significant (p < o.o5, but did not meet the threshold for significance after adjustment for multiple testing) in association with ILA

[†]IPF is idiopathic pulmonary fibrosis

[‡]Odds Ratios are per copy of the risk allele


ILA biomarkers (CD4+Tcells and inflammaging)

15 individuals with ILA, 21 age-matched controls and 28 healthy young

subjects

Basal serum concentrations of biomarkers between groups

Biomarker	ILA n=80	Non-ILA n=80	p value	Corrected p value*
MMP-1 ng/ml (SD)	7 ± 4	6 ± 3	0.02	0.2
MMP-2 ng/ml (SD)	38± 4	37 ± 2	0.53	1.0
MMP-3 ng/ml (SD)	19 ± 11	17 ± 10	0.28	1.0
MMP-7 mcg/ml (SD)	6 ± 4	4 ± 2	0.008	0.09
MMP-8 ng/ml (SD)	4 ± 4	3 ± 3	0.28	1.0
MMP-9 ng/ml (SD)	14 ± 9	12 ± 8.2	0.32	1.0
MMP-12 pg/ml (SD)	30 ± 12	27 ± 10	0.16	1.0
MMP- 13 pg/ml (SD)	357 ± 143	298 ± 116	0.004	0.04
IL-6 ng/ml (SD)	15.7 ± 21	11.4 ± 15	0.04	0.4
SP-D ng/ml (SD)	10 ± 11	8 ± 6	0.04	0.4
alfa-Klotho pg/ml (SD)	735 ± 462	519 ± 133	0.99	1.0
Resistin ng/ml (SD)	12 ± 5	9 ± 4	0.0005	0.006
*corrected by Bonferroni adjustment; MMP=matrix metalloproteinase; SD=standard deviation; IL=interleukin; SP-D=surfactant protein D.				

CD4+T cells from ILA subjects are highly proliferative and show an excessive functional activity, likely related to the loss of KLRG1 expression, which may contribute to an inflammatory state and the development of ILA.

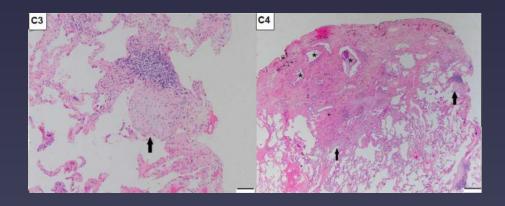
> Am J Respir Crit Care Med. 2022 Apr 19. doi: 10.1164/rccm.202110-22960C. Online ahead of print.

The Proteomic Profile of Interstitial Lung Abnormalities

```
Gisli Thor Axelsson <sup>1 2</sup>, Gunnar Gudmundsson <sup>1 3</sup>, Kathrine A Pratte <sup>4</sup>, Thor Aspelund <sup>1 5</sup>, Rachel K Putman <sup>6</sup>, Jason L Sanders <sup>6</sup>, Elias F Gudmundsson <sup>5</sup>, Hiroto Hatabu <sup>7 8</sup>, Valborg Gudmundsdottir <sup>1 5</sup>, Alexander Gudjonsson <sup>5</sup>, Takuya Hino <sup>8</sup>, Tomoyuki Hida <sup>8 9</sup>, Brian D Hobbs <sup>6 10</sup>, Michael H Cho <sup>6 10</sup>, Edwin K Silverman <sup>6 10</sup>, Russell P Bowler <sup>4 11</sup>, Lenore J Launer <sup>12</sup>, Lori L Jennings <sup>13</sup>, Gary M Hunninghake <sup>6 8</sup>, Valur Emilsson <sup>5</sup>, Vilmundur Gudnason <sup>5 1</sup>
```

287 associations with ILA

- SFTPB (OR 3.71 [95% CI 3.20-4.30], P 4.28×10-67),
- SCG3AB1 (OR 2.43 [2.13-2.77], P 8.01×10-40)
- WFDC2 (OR 2.42 [2.11-2.78], P 4.01×10-36)

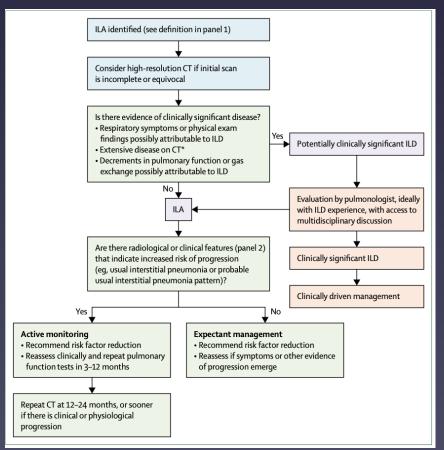

WFDC2 had the strongest associations with ILA progression

Histopathology of ILA, and significance to ILDs development

424 nodule resection, 26 (6%) had ILA, 17 (4%) subpleural distribution

- 4% any fibrosis
- 1.6% fibroblastic foci
- o.5% honeycombing
- o.5% UIP pattern

Miller ER et al, Am J Respir Crit Care Med 2018;197:955–958


397 nodule resection , 101 (25%) had interstitial changes, 10% fibrotic

- 7% SRIF
- 1% UIP
- o.7% NSIP

ILA biological significance remains a field for research

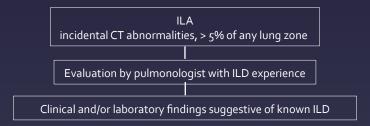
ILA management

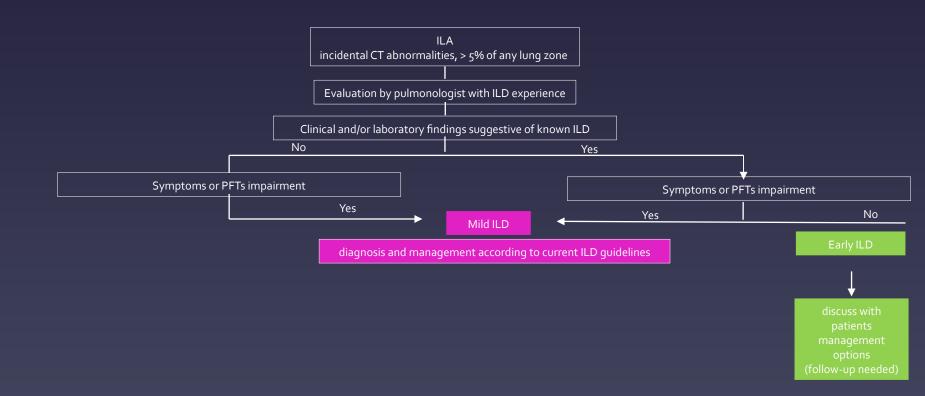
«To date, only minimal evidence exists to support a specific management plan for ILAs.»

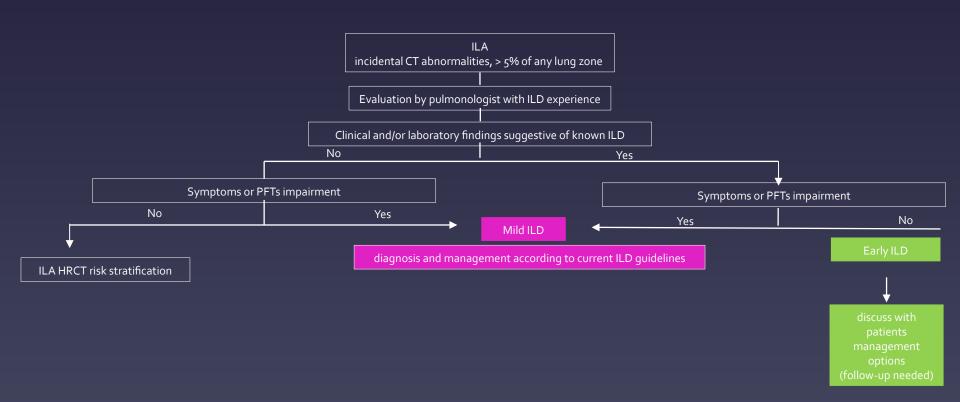
Biopsy may tell what this is

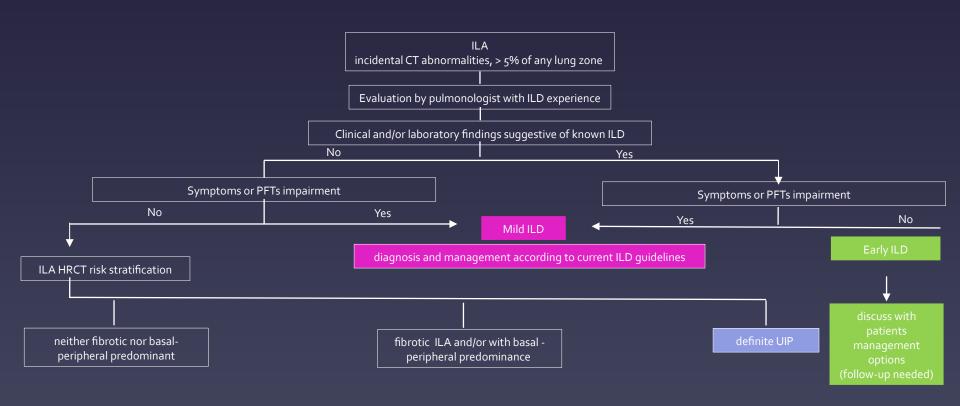
Panel 2: Risk factors for progression of interstitial lung abnormalities

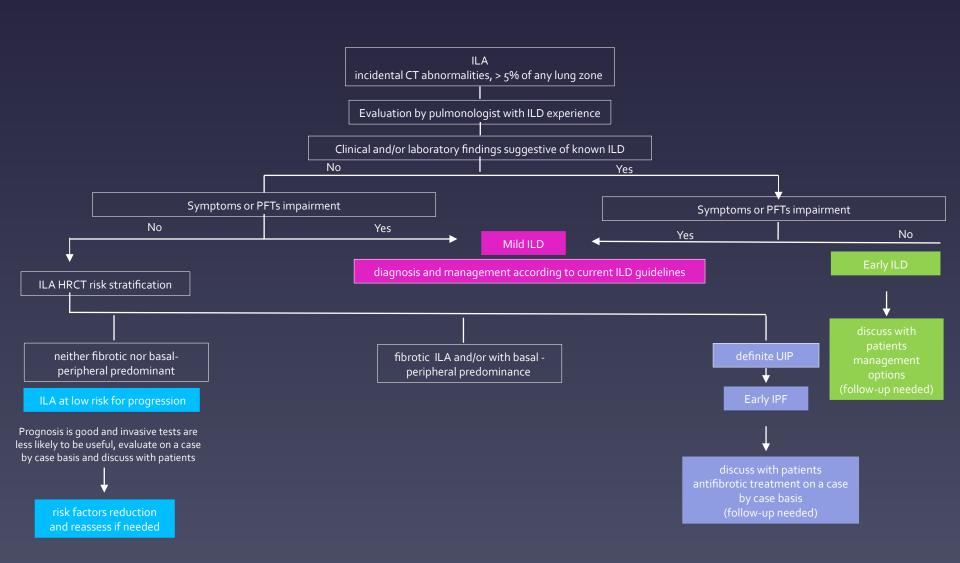
Clinical risk factors

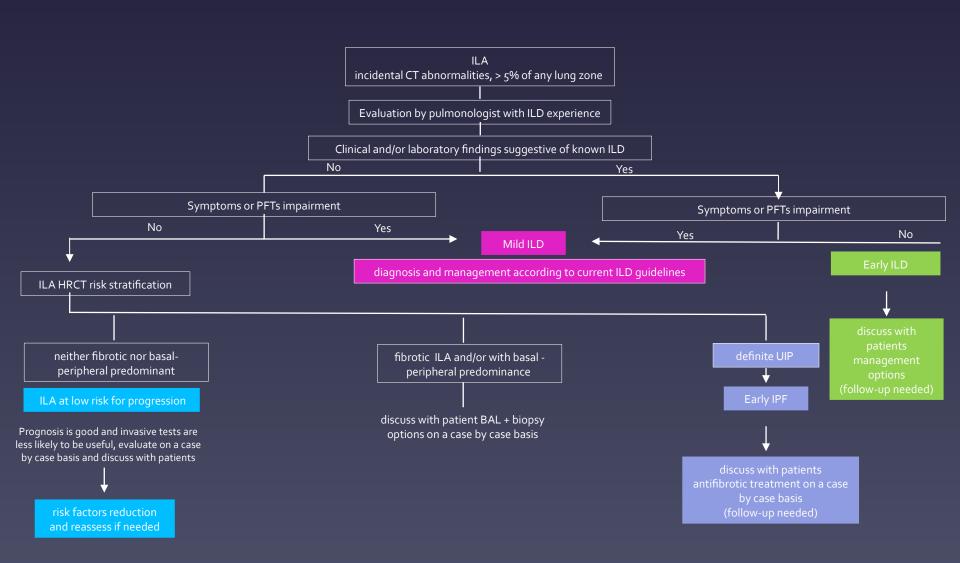

- Cigarette smoking
- Other inhalational exposures
- Medications (eg, chemotherapy, immune checkpoint inhibitors)
- Radiation therapy
- Thoracic surgery
- Physiological or gas exchange findings at lower limits of normal

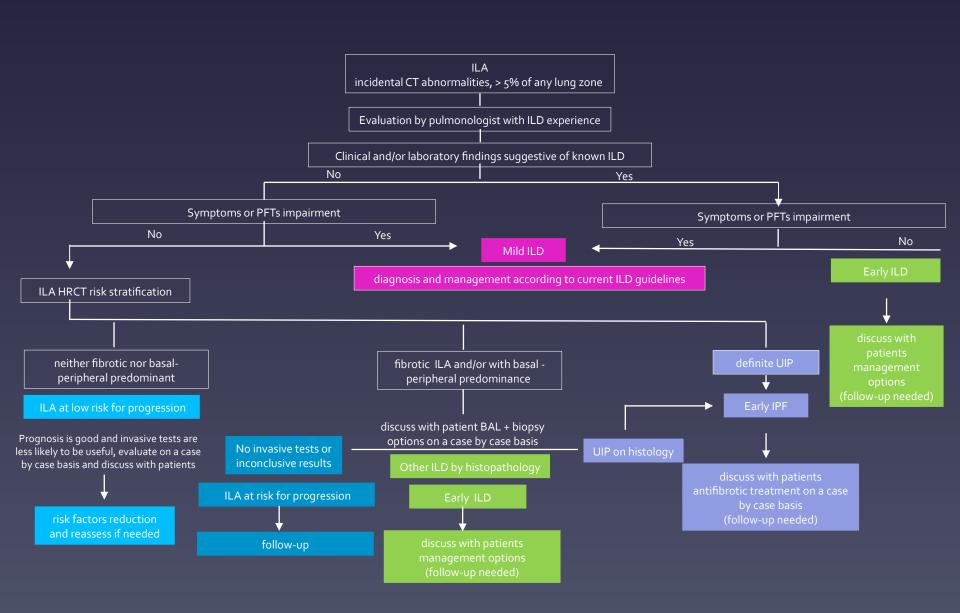

Radiological risk factors


- Non-fibrotic interstitial lung abnormalities (ILAs) with basal and peripheral predominance
- Fibrotic ILAs with basal and peripheral predominance but without honeycombing (ILAs with probable usual interstitial pneumonia pattern)


Fibrotic icAc with basal and peripheral predominance and honeycombing (ILAs with usual interstitial pneumonia pattern)


Based on ATS/ERS statement this is IPF





S Tomasetti et al, ERR 2022

CONCLUSION

- ILA is **not** a clinical entity (lack of biologic significance, lack of defined clinical features, unknown pathology, uncertain management).
- ILA is a risk category and ILA subgroups (fibrotic/subpleural = IPF-like features) identify <u>patients at risk for progression and death</u> related to pulmonary fibrosis.
- Consensus criteria guiding physicians on when and how further
 characterize <u>ILA reclassifying it into known ILD categories</u> (Early
 /sub-clinical ILD or mild ILD) are eagerly needed.

